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§1 August 20, 2018

§1.1 Fields

Definition

A field is a set F with two operations, + and ×, taking F× F→ F. ex. Q,R,C

Properties

For a, b, c ∈ F, these operations satisfy

1. Associativity

• a+ (b+ c) = (a+ b) + c.

• a · (b · c) = (a · b) · c.

2. Commutativity

• a+ b = b+ a.

• a · b = b · a.

3. Identities

• ∃ 0 ∈ F, a+ 0 = a.

• ∃ 1 ∈ F, a · 1 = a.

4. Inverses

• ∃ − a ∈ F satisfying a+ (−a) = 0.

• ∃ a−1 ∈ F (for a 6= 0) satisfying a · (a−1 = 1.

5. 0 6= 1.

6. Distributivity
a · (b+ c) = a · b+ a · c

More Examples of Fields

• F = {0, 1}, sometimes denoted F2.

• F = {0, 1, α, α2} or F4.
α 6= 1 =⇒ α2 + α+ 1 = 0.

+ 0 1 α α2

0 0 1 α α2

1 1 0 α2 α
α α α2 0 1
α2 α2 α 1 0

× 0 1 α α2

0 0 0 0 0
1 0 1 α α2

α 0 α α2 1
α2 0 α2 1 α

Theorem 1.1 (Uniqueness of the Identity Element)

Proof. Let F be a field and suppose 0, 0′ ∈ F are additive identities. Then

0 = 0 + 0′ = 0′.
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§2 August 22, 2018

§2.1 Some Field Results

Theorem 2.1

For any a ∈ F, a · 0 = 0

Proof. Let a ∈ F. Let b = a · 0 and −b be the additive inverse of b.

0 + 0 = 0

a · (0 + 0) = a · 0
a · 0 + a · 0 = a · 0

a · 0 + (a · 0 +−b) = a · 0 + (−b)
a · 0 + 0 = 0.

Proposition 2.2

For any a ∈ F, (−1) · a = −a.

§2.2 Vector Spaces

Introduction

Let F be a field. Consider a list of ordered elements of F of length n: (x1, . . . , xn), xi ∈ F.

Define Fn def
= {(x1, . . . , xn) | xi ∈ F}. Then F is a vector space.

Definition

A vector space over F is a set V together with two operations:

+ : V × V · : F× V

and satisfies the following:

Properties

1. Commutativity. u+ v = v + u ∀u, v ∈ V.

2. Associativity.
(u+ v) + w = u+ (v + w) ∀u, v, w ∈ V.
(λ1λ2) · v = λ1(λ2 · v) ∀ v ∈ V.

3. Additive Identity. ∃~0 such that ~0 + v = v ∀ v ∈ V.

4. Multiplicative Identity. ∃1F ∈ F such that 1F · v = v ∀ v ∈ V.

5. Additive Inverse. ∃w ∈ V such that v + w = ~0 ∀ v ∈ V.

6. Distributivity.
λ(u+ v) = λu+ λv ∀λ ∈ F, u, v ∈ V
(λ1 + λ2)v = λ1v + λ2v ∀ v ∈ V.
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§3 August 24, 2018

§3.1 Examples of Vector Spaces

Example 3.1

(C2,C,+, ·) (C2,R,+, ·) (F∞,F,+, ·)

Example 3.2

V := { polynomials in x of deg ≤ 17 with coefficients in R}, F = R
where addition is done polynomially and multiplication is done on coefficients.

§4 August 27, 2018

Another Example of a Vector Space

Definition 4.1. FS def
= {functions from S to F} = {f : S → F}

Example 4.2

F a field, S a set

V = FS := {functions from S to F} = {f : S → F}

Addition: f, g : S → F (f + g)(s)
def
= f(s) + g(s) for all s ∈ S

Scalar Multiplication: λ ∈ F, f : S → F (λ · f)(s)
def
= λ · f(s)

Proof that V = F2 is a vector space

Additive identity: the zero function
Additive inverse: if f ∈ V , then its additive inverse is −f : S → F.

§4.1 Consequences of the Axioms of a Vector Space

Let (V,F,+, ·) be a vector space.

Proposition 4.3

The additive identity of V is unique.

Proposition 4.4

For each v ∈ V , the additive inverse of v is unique.

Proof. Suppose that w and w′ are additive inverses of v.
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w = w +~0

= w + (v + w′) since w′ is additive inverse of v

= (w + v) + w′ by associativity of addition

= ~0 + w′ since w is additive inverse of v

= w′

Notation: From now on, v − w means v + (−w).

Proposition 4.5

For all v ∈ V, 0 · v = ~0.

Proof.

0 · v = (0 + 0) · v
= 0 · v + 0 · v

Now let’s compute 0 · v − 0 · v = (0 · v + 0 · v)− 0 · v

~0 = 0 · v + (0 · v − 0 · v)

~0 = 0 · v +~0

~0 = 0 · v

Proposition 4.6

−v = (−1) · v

Hint: Start with 1 + (−1) = 0 in F

§4.2 Subspaces

Definition

Let (V, F,+, ·) be a vector space. A subset U ⊆ V is a subspace if (U,F,+, ·) is a vector
space in its own right.

Example 4.7

{(x1, x2, 0)
∣∣x1, x2 ∈ R} ⊆ R3 is a subspace.

7
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Criteria for Subspaces

Proposition 4.8 (Sufficient and Necessary Conditions)

Subspaces must satisfy the following:

1. ~0 ∈ U.

2. U is closed under addition.

3. U is closed under scalar multiplication.

These conditions ensure that U has a additive identity and that addition and multipli-
cation make sense within U .
e.g. If u ∈ U , then (3) implies (−1)u ∈ U , i.e. −u ∈ U so U has additive inverses.

Remaining axioms are inherited from V . e.g. associativity
If u, v, w ∈ U , then (u+ v) + w = u+ (v + w) in V . But (2) u+ v and v + w are both
elements of U . So (u+ v) + w and u+ (v + w) are also in U by (2) again.
So equality holds in U !

§5 August 29, 2018

Let V = R(0,3) and U = {f : (0, 3)→ R | f is differentiable and f ′(2) = 0}.
Let’s see whether U is a subspace of V .

• The zero function 0 : (0, 3)→ R, x→ 0 is differentiable and 0′(2) = 0 so (1) holds.

• Let f, g ∈ U . Calculus tells us that f + g is differentiable, and (f + g)′(2) =
f ′(2) + g′(2) = 0 + 0 = 0. So f + g ∈ U , so (2) holds.

• Let λ ∈ R and f ∈ U . Calculus says that λ · f is differentiable and (λf)′(2) =
λ · f ′(2) = λ · 0 = 0. So λ · f ∈ U and so (3) holds.

Thus, U is a subspace of V .

Example 5.1 (More Examples of Subspaces)

{~0} = {(0, 0, 0)} is a subspace.
A line through the origin is a subspace.
A plane through the origin is a subspace.

Theorem 5.2

The only proper subspaces of R3 are lines through the origin and planes through
the origin.

Exercise 5.3. Is U = {(a, a) | a ∈ R, a ≥ 0} a subspace of R2?

Solution. No. U is not closed under scalar multiplication by λ < 0.

Exercise 5.4. Is U = {(a, a) | a ∈ R} ∪ {(−a, a) | a ∈ R} a subset of R2?

Solution. No. U is not closed under addition.
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§5.1 Forming New Subspaces

Let (V, F,+, ·) be a vector space and let U1, . . . , Um ⊆ V be subsets.

Definition 5.5. U1 + . . . , Um = {u1 + . . .+ um | ui ∈ Ui for i = 1, . . . ,m}.

Example 5.6

For V = R3, F = R, and U1 = {(x, 0, 0) ∈ R3 | x ∈ R}, U2 = {(0, y, 0) ∈ R3 | y ∈ R}

U1 + U2 = {(x, y, 0) | x, y ∈ R}

Definition 5.7. If U1, . . . , Um are subspaces of V , then U1, . . .+ Um is called the sum
of the subspaces U1, . . . , Um.

Definition 5.8. S is the smallest subspace of V containing U1, . . . , Um if all subspaces
W of V that contains U1, . . . , Um also contains S.

Proposition 5.9

If U1, . . . , Um are subspaces of V , then U1 + . . .+ Um is the smallest subspace of V
that contains each of U1, . . . , Um.

Proof. First, we show that U1 + . . .+ Um is a subspace.

i) ~0 = ~0 + . . .+~0

ii) (u1 + . . .+ um) + (u′1 + . . .+ u′m) = (u1 + u′1) + . . .+ (um + u′m) where (u1 + u′1) ∈
U1, . . . , (um + u′m) ∈ Um.

iii) Check scalar multiplication for yourself.

Now we show that U1 + . . .+ Um contains each Ui for i = 1, . . . ,m.
e.g. Ui ∈ U1 + . . . + Um. This holds because given any ui ∈ Ui, we can write it as
ui = ~0 · u1 + . . .+ ui + . . .+~0 · um.

Finally, we show that for all subspaces W of V that contains U1, . . . , Um, then W
contains U1 + . . .+ Um.

By assumption, Ui ⊆ W for each i, so ui ∈ W for each i. But W is a subspace,
so by closure of addition, u1 + . . . + um ∈ W . Since u1 + . . . + um was arbitrary,
U1 + . . .+ Um ⊆W .

§6 August 31, 2018

§6.1 Direct Sums

Definition 6.1. Suppose U1, . . . , Um ⊆ V are subspaces. If each v ∈ U1 + . . . + Um
ca be written in exactly one way as v = u1 + . . . + um with each ui ∈ Ui, then we say
U1 + . . .+ Um is a direct sum and we write U1 ⊕ . . .⊕ Um.

9
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Proposition 6.2

V = R3, F = R. U1 = {(x, y, 0) | x, y ∈ R} U2 = {(0, 0, z) | z ∈ R} Then

U1 + U2 is direct and U1 ⊕ U2 = R3.

Example 6.3

Let U3 = {(0, y, y) | y ∈ R}. Then U1 + U2 + U3 = R3, but the sum is not direct.

(0, 0, 0) = (0, 0, 0) + (0, 0, 0) + (0, 0, 0)

(0, 0, 0) = (0, 1, 0) + (0, 0, 1) + (0,−1,−1)

Criterion for Direct Sums

Proposition 6.4 (A Necessary and Sufficient Condition for Direct Sums)

Suppose that U1, . . . , Um ⊆ V are subspaces. Then U1 + . . .+ Um is a direct sum if
and only if the only way of writing ~0 = u1 + . . .+ um with each ui ∈ Ui for each i is
to take ~0 = ~0 + . . .+~0.

Proof. Assume that U1 + . . .+ Um is a direct sum.
It is always true that ~0 = ~0 + . . .+~0. Since U1 + . . .+ Um is direct, this must be the

only way to express ~0 as a sum of the form u1 + . . .+ um with ui ∈ Ui. This proves the
if condition.

Suppose that the only way to write ~0 = u1 + . . .+ um with ui ∈ Ui is to take ui = 0
for all i.

Let v ∈ U1 + . . .+Um and suppose that there are two ways of writing v as v = u1 + . . .+
um, ui ∈ Ui and v = u′1+. . .+u′m, u

′
i ∈ Ui. Then we obtain ~0 = (u1−u′1)+. . .+(um−u′m).

Note that ui − u′i
Note that ui − u′i ∈ Ui since Ui is a subspace. Our hypothesis implies that each

ui − u′i = ~0. Hence, ui = u′i for each i.

Lemma 6.5

Let U,W ⊆ V be subspaces. Then U +W is a direct sum ⇐⇒ U ∩W = {~0}.

Proof. Suppose that U + W is a direct sum. Let v ∈ U ∩W . We want to show that
v = ~0.
U ∩W is a subspace, since U,W are both subspaces. So −1 · v = −v is also in U ∩W .
But then ~0 = v + (−v). Since U +W is direct, v = ~0, −v = ~0.

Now suppose U ∩W = {~0}. We will show that ~0 = u+ w, u ∈ U, w ∈W . It suffices
to show that u = w = ~0.
~0 = u + w tells us that u = −w ∈ W . Hence u ∈ U ∩W = ~0. So u = ~0. But then

~0 = ~0 + w =⇒ w = ~0.

10
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Example 6.6

U = {(x, y, z) | x+ y + z = 0} (plane through origin)
W = {(x = y = 0} (z−axis)
U ∩W = {(0, 0, 0)} ∴ U +W is a direct sum.

§6.2 Span

Let (V, F,+, ·) be a vector space.

Definition 6.7. A linear combination of v1, . . . , vm ∈ V is a vector of the form

a1v1 + . . .+ amvm, ai ∈ F.

Example 6.8

(17,−4, 2) = 6(2, 1,−3)+5(1,−2, 4) is a linear combination of (2, 1,−3) and (1,−2, 4).

Definition 6.9. The span of v1, . . . , vm ∈ V is the set of all linear combinations of

v1, . . . , vm. (i.e. span(v1, . . . , vm)
def
= {aivi + . . .+ amvm | ai ∈ F}).

By convention, span()
def
= {~0}

Proposition 6.10

span(v1, . . . , vm) is the smallest subspace containing v1, . . . , vm.

§7 September 5, 2018

Proof. We do this in three parts.

1. span(v1, . . . , vm) is a subspace.

a) ~0 = 0 · v1 + . . .+ 0 · vm. ∴ ~0 ∈ span(v1, . . . , vm).

b) Closed under addition. (a1v1 + . . . + amvm) + (b1v1 + . . . + bmvm) = (a1 +
b1)v1 + . . .+ (am + bm)vm ∈ span(v1, . . . , vm).

c) Closed under multiplication. λ(a1v1+ . . .+amvm) = (λa1)v!+ . . .+(λam)vm ∈
span(v1, . . . , vm).

2. v1, . . . , vm ∈ span(v1, . . . , vm).
vi = 0 · v1 + . . .+ 1 · vi + . . . 0 · vm ∈ span(v1, . . . , vm

3. Smallest subspace. Let W ⊆ V be a subspace that contains v1, . . . , vm. We need
to show that span(v1, . . . , vm) ⊆W .
Let v ∈ span(v1, . . . , vm). We’ll show that v ∈W .

v = a1v1 + . . .+ amvm ai ∈ F.

By hypothesis, vi ∈W for each i
=⇒ aivi ∈W for each i
=⇒ a1v1 + . . .+ amvm ∈W
=⇒ v ∈W .

11
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Special Situation

When span(v1, . . . , vm) = V , we say that v1, . . . , vm span V .

Example 7.1

V = C4, F = C.

(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) span V.

Example 7.2

Pm(F)
def
= {polynomials in x with degree at most m with coefficients in F}

= span(xm, xm−1, . . . , x, 1)
since each element of Pm(F) has the form amx

m + am−1x
m−1 + · · ·+ a1x+ a0 with

ai ∈ F.

§7.1 Finite Dimension

Definition 7.3. V is finite dimensional if there is a finite list v1, . . . , vm ∈ V such
that span(v1, . . . , vm) = V .

Definition 7.4. V is infinite dimensional if it is not finite dimensional.

Theorem 7.5 (Vector Space of All Polynomials has Infinite Dimension)

P (F)
def
= {all polynomials in x with coefficients in F} is not finite dimensional.

Proof. Suppose for the sake of contradiction that P (F) is finite dimensional. Then by
definition, ∃ a finite list p1, . . . , pm ∈ P (F) such that span(p1, . . . , pm) = P (F).

Let N = max{deg p1, . . . ,deg pm}. Then deg(a1p1 + . . .+ ampm) ≤ N and
xN+1 /∈ span(p1, . . . , pm), which is a contradiction.

§7.2 Linear Dependence

Definition 7.6. A list v1, . . . , vm ∈ V is linearly independent if the only way to write

~0 = a1v1 + . . .+ amvm

is with a1 = . . . = am = 0.

Example 7.7

In R3, (1, 0, 0), (0, 1, 0), (0, 0, 1) are linearly independent because (0, 0, 0) = a1(1, 0, 0)+
a2(0, 1, 0) + a3(0, 0, 1) = (a1, a2, a3). Thus, a1 = a2 = a3 = 0.

Definition 7.8. A list of vectors is linearly dependent if it is not linearly independent.

12
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Let v ∈ span(v1, . . . , vm). Then v = a1v1 + . . .+ amvm.
Suppose v = a′1v1 + . . .+ a′mvm. Then ~0 = (a1 − a′1)v1 + . . .+ (am − a′m)vm.

If v1, . . . , vm is linearly independent, then a1 = a′1, . . . , am = a′m
i.e. there is exactly one way to write v ∈ span(v1, . . . , vm) as a linear combination of
v1, . . . , vm.

Proposition 7.9 (Key Result)

The length of any linearly independent list is at most the length of any spanning list
of a finite dimensional vector space.

We will present the proof of Proposition 7.9 later on in Section 8.

Example 7.10

{(1, 0, 0), (0, 1, 0), (0, 0, 1)} spans R3

Therefore, any four vectors cannot be linearly independent in this vector space.

§8 September 7, 2018

Lemma 8.1 (Linear Dependence Lemma)

Suppose that v1, v2, . . . , vm is a linearly dependent list in V . Then there exists an
index j in {1, 2, . . . ,m} such that the following hold:

(a) vj ∈ span(v1, v2, . . . , vj−1)

(b) span(v1, v2, . . . , vm) = span(v1, v2, . . . , vj−1, vj+1, . . . , vm)

Proof. By definition of linear dependence, ∃ a1, a2, . . . , am ∈ F not all zero such that

~0 = a1v1 + a2v2 + . . .+ amvm.

Let j = max{i | ai 6= 0}.
Then a1v1 + a2v2 + . . .+ ajvj = ~0.
=⇒ a1v2 + a2v2 + . . .+ aj−1vj−1 = −ajvj
=⇒ − 1

aj
(a1v1 + a2v2 + . . .+ aj−1vj−1) = v†j .

So vj ∈ span(v1, v2, . . . , vj−1), proving (a).
It is clear that span(v1, v2, . . . , vj−1, vj+1, . . . , vm) ⊆ span(v1, v2, . . . , vm), so we will

show that span(v1, v2, . . . , vm) ⊆ span(v1, v2, . . . , vj−1, vj+1, . . . , vm).
Let v ∈ span(v1, v2, . . . , vm). Then

v = c1v1 + c2v2 + . . .+ cjvj + . . .+ cmvm, ci ∈ F
= c1v1 + c2v2 + . . .+ cj−1vj−1 + cj(− 1

aj
(a1v1 + . . .+ aj−1vj−1)) + cj+1vj+1 + . . .+ cmvm.

by replacing vj using †. This shows that v ∈ span(v1, v2, . . . , vm).

Remark 8.2. If j = 1 in the lemma above, then (a) would say that v1 ∈ span() = {~0}
i.e. v1 = ~0.

Remark 8.3. ~0 can never be part of a linearly independent list of vectors.

13



Shaquille Que (Fall 2018) MATH 354 Lecture Notes

Now we are ready to prove Proposition 7.9.

Proof of Key Result. First, we show that v1 ∈ span(u1, . . . , un) =⇒ v1, u1, . . . , un is
linearly dependent. Homework!Homework!

Lemma 8.1 tells us that we can remove some uj1 without changing the span, i.e.

span(v1, u1, . . . , un) = span(v1, u1, . . . , uj1−1, uj1+1, . . . , un).

Note that Lemma 8.1 does not remove v1. If it did, then v1 = ~0 (because then v1 ∈ span()),
so then v1, . . . , vm is not linearly independent.

Replace v1, u1, . . . , un with v1, u1, . . . , uj1−1, uj1+1, . . . , un.
Next, we note that v2 ∈ span(v1, u1, . . . , uj1−1, uj1+1, . . . , un) = V

=⇒ v1, v2, u1, . . . , uj1−1, uj1+1, . . . , un is linearly dependent.
So by Lemma 8.1, we can remove uj2 without changing the span

i.e. span(v1, v2, u1, . . . ,��uj1 , . . . , un) = span(v1, v2, u1, . . . ,��uj1 , . . . ,��uj2 , . . . , un)
Again, we note that the lemma does not remove v2, because if it did, then v2 ∈

span(v1) =⇒ v1, . . . , vm is not linearly independent.
By repeating this process, we will end up with v1, v2, . . . , vm, and maybe some u′s

spanning V . This proves that m ≤ n.

§9 September 10, 2018

§9.1 Basis

Definition 9.1. A basis of V is a list v1, . . . , vm that spans V and is linearly independent.

Example 9.2

Some examples and non-examples of bases.

1. For V = Fn, v1 = (1, 0, . . . , 0), v2 = (0, 1, 0, . . . , 0), . . . , vn = (0, 0, . . . , 0, 1) is
called the standard basis of Fn.

2. (1, 2, 7), (3, 4, 1) is not a basis. They are linearly independent in R3 but they
don’t span.

3. (1, 2), (2, 3) are a basis for R3.

4. 1, x, x2, . . . , xn form a basis for Pn(F ).

Proposition 9.3

A list v1, . . . , vm is a basis ⇐⇒ every v ∈ V can be written v = a1v1 + . . . +
amvm, ai ∈ F in exactly one way.

Proof. Suppose v1, . . . , vm is a basis of V . Let v ∈ V . Since v1, . . . , vm spans V ,
v = a1v1 + . . .+ amvm, ai ∈ F.

Since v1, . . . , vm is linearly independent, a1, . . . , am ∈ F are unique.
Conversely, suppose v ∈ V can be written in exactly one way as v = a1v1 + . . . +

amvm, ai ∈ F. Then every v is in span(v1, . . . , vm). Taking v = ~0 implies that the
zero vector can be expressed in exactly one way as ~0 = a1v1 + . . .+ amvm. Since taking
a1, . . . , am = 0, . . . , 0 works, this must be the only way to express the zero vector. This
implies that the list is linearly independent.

14
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Theorem 9.4

Every spanning list can be trimmed to a basis.

Sketch of Proof. Let v1, . . . , vm be a spanning list for V , B := {v1, . . . , vm}
For j = 1, . . . ,m, do:

(If vj ∈ span({v1, . . . , vj−1} ∩B), then delete vj from B.)
When the loop finishes, B is a basis.

Corollary 9.5

Every finite dimensional vector space has a basis.

Proof. Finite dimensional means that there exists a finite spanning list. By Theorem 9.4,
we can trim the spanning list to a basis.

We can also go the other way.

Theorem 9.6

Any linearly independent list in a finite dimensional vector space can be extended
to a basis.

Proof. Suppose v1, . . . , vm ∈ V is linearly independent. Let w1, . . . , wn ∈ V be a basis
(which exists by Corollary 9.5). Apply Theorem 9.4 on v1, v2, . . . , vm, w1, . . . , wn and
note that no vi’s will be removed since v1, . . . , vm is linearly independent.

Lemma 9.7

Let V be a finite dimensional vector space and U ⊆ V be a subspace. Then U is
also finite dimensional.

Proof. If U = {~0}, then we are done. Otherwise, ∃ v1 6= 0 ∈ U . If U = span(v1), then we
are also done. Otherwise, ∃ v2 ∈ U with v2 /∈ span(v1). If U = span(v1, v2), then we are
done too. We repeat this process and claim that it will end at some point.

Indeed, the process above produces a growing list v1, . . . , vn of linearly independent
vectors (by Lemma 8.1) in V . Since V is finite dimensional, V has a spanning list
W1, . . . ,Wm.

By Proposition 7.9, we have n ≤ m, so the process must terminate.

§10 September 12, 2018

Theorem 10.1

Let V be a finite dimensional vector space and let U be a subspace of V . Then there
exists a subspace W such that V = U ⊕W .

15
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Proof. Let u1, . . . , un ∈ U be a basis of U .
We extend this to a basis for V : u1, . . . , un, w1, . . . , wm.

For each v ∈ V , we know that

v = a1u1 + . . .+ anun︸ ︷︷ ︸
∈U

+ b1w1 + . . .+ bmwm︸ ︷︷ ︸
∈W

.

Thus, V ⊆ U +W . Since U +W ⊆ V , we must have V = U +W .
Now we show that U ∩W = {~0}. Let v ∈ U ∩W . Then since v ∈ U , we can write

v = a1u1 + . . .+ anun, and since v ∈W , we can also write v = b1v1 + . . .+ bmwm. Then
subtracting the two equations yields ~0 = a1u1 + . . .+ anun − b1w1 − . . .− bmwm. But
since u1, . . . , un, w1, . . . , wm is a basis of V , then a1 = . . . = an = b1 = . . . = bm = 0, so
v = ~0.

§10.1 Dimension

First, we need to prove the following theorem.

Theorem 10.2

Let (V,F,+, ·) be a finite dimensional vector space. Then any two bases of V must
have the same length.

Proof. Let u1, . . . , um and v1, . . . , vn be bases of V .
First, simply consider u1, . . . , um as a linearly independent list and v1, . . . , vm as a

spanning list. By Proposition 7.9, m ≤ n.
Similarly, considering u1, . . . , um as a spanning list and v1, . . . , vn as a linearly inde-

pendent list, we have n ≤ m.
This proves m = n.

Now that we have shown that all bases of a vector space have the same length, we can
formally define what a dimension is.

Definition 10.3. The dimension of V is the length of a basis of V , denoted by dim(V ).

Example 10.4

We list the dimensions of vector spaces that we have previously encountered.

1. Since the standard basis of V = Fn has length n, then dimV = n.

2. Since 1, x, x2, . . . , xn is a basis of V = Pn(F), then dim(Pn(F)) = n+ 1.

Proposition 10.5

If U is a subspace of V then dimU ≤ dimV .

Proof. A basis of U is a linearly independent list in V while a basis of V spans V . So
Proposition 7.9 =⇒ dimU ≤ dimV .

16



Shaquille Que (Fall 2018) MATH 354 Lecture Notes

Proposition 10.6

If dimV = n and v1, . . . , vn is linearly independent, then v1, . . . , vn spans V .

Proof. Extend v1, . . . , vn to a basis. Since dimV = n, then the new list must have length
n, Hence, v1, . . . , vn was already a basis.

Proposition 10.7

If dimV = n and v1, . . . , vn spans V , then v1, . . . , vn is linearly independent.

Proof. Boring and similar to above.

Example 10.8

Let U = {f(x) ∈ P3(R) | f ′(−2) = 0} ⊆ P3(R)︸ ︷︷ ︸
4 dimensional

,

Then dimU < 4.

Proof. dimU ≤ dimV = 4. Suppose that dimU = 4 = dimV .
But this implies that U = V since if u1, . . . , u4 is a basis of U , then it is linearly

independent in V . But dimV = 4, so u1, . . . , u4 is a basis of V =⇒ U = V .
But f(x) = x is in P3(R) = V , but f ′(−2) = 1 6= 0, hence U 6= V , which is a

contradiction.

Proposition 10.9 (Sum of Dimensions)

Let V be a finite dimensional vector space and let U1, U2 ⊆ V be subspaces. Then

dim(U1 + U2) = dimU1 + dimU2 − dim(U1 ∩ U2).

§11 September 14, 2018

Proof. Let u1, . . . , um be a basis of U1 ∩ U2. We’ll extend this basis in two ways:

• to a basis of U1: u1, . . . , um, v1, . . . , vn; and

• to a basis of U2: u1, . . . , um, w1, . . . , ws.

We claim that u1, . . . , um, v1, . . . , vn, w1, . . . , ws is a basis of U1 + U2.
First, we’ll show linear independence. Suppose that ~0 =

∑
aiu1 +

∑
bjvj +

∑
ckwk.

Then
∑

aiu1 +
∑

bjvj︸ ︷︷ ︸
in U1

= −
∑

ckwk

which means that −
∑
ckwk ∈ U1 ∩ U2 =⇒ −

∑
ckwk =

∑
diui since u1, . . . , um is a

basis of U1 ∩ U2. i.e.
~0 =

∑
ckwk +

∑
diui.

17
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=⇒ ck’s and di’s are all 0 since u1, . . . , um, w1, . . . , ws are a basis of U2.
Since ck’s are all 0, we must have

~0 =
∑

aiui +
∑

bjvj .

But then ai’s and bj ’s are 0, since u1, . . . , um, vj , . . . , vn are a basis of U1. This proves
the claim, and now we can compute the dimensions.
dim(U1 +U2) = m+n+ s = (m+n) + (m+ s)−m = dim(U1) + dim(U2) + dim(U1 ∩U2)
as desired.

§11.1 Linear Transformations

Definition 11.1. Let V,W be vector spaces over F. A linear map or linear transfor-
mation from V to W is a function T : V →W with the following properties:

• Additivity: T (u+ v︸ ︷︷ ︸
in V

) = T (u) + T (v)︸ ︷︷ ︸
in W

.

• Homogeneity: T ( λv︸︷︷︸
in V

) = λ · T (v)︸ ︷︷ ︸
in W

.

Remark 11.2. T (~0V ) = ~0W since T (~0V ) = T (~0V +~0V ) = T (~0V ) + T (~0V )
=⇒ T (~0V ) = ~0W

Notation: L (V,W ) = {T : V →W | T linear}.

Example 11.3 (Common Linear Maps)

Some common linear maps are:

1. Zero map: 0 : V →W mapping v 7→ ~0W .

2. Identity map: Idv : V → V mapping v 7→ v Idv ∈ L (V, V )

3. Differentiation

4. Integration

5. Shift: T : F∞ → F∞ mapping (x1, x2, . . .) 7→ (x2, x3, . . .).

6. T : R3 → R2 mapping (x, y, z) 7→ (5x− 2y + z, 7x+ y − z).

§12 September 17, 2018

Proposition 12.1 (Linear Maps are Vector Spaces)

L (V,W ) is a vector space over F.

Proof. Let S, T ∈ L (V,W ). Then (S + T )(v) := S(v) + T (v) for all v ∈ V and for
all λ ∈ F, (λT )(v) := λ · T (v), so that L (V,W ) is closed under addition and scalar
multiplication. Moreover, the additive identity is just the zero map.

L (V,W ) in fact has extra structure: we can also “multiply” maps using composition:

U
T−→ V

S−→W , where T, S are linear maps. ST : U →W by ST (u)
def
= S(T (u)).

The properties of this composition are:

18
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• Associativity.

U
T1−→ V

T2−→W
T3−→ X, where T1, T2, T3 are linear maps, then T3(T2T1) = (T3T2)T1.

• Identity.
Idw · T = T · Idv = T

• Distributivity.
S1, S2 ∈ L (V,W ), T ∈ L (W,X)
T (S1 + S2) = T · S1 + T · S2.

Proposition 12.2

Linear maps are determined by what they do to a basis of a domain.

Let T : V → W is a linear map and suppose v1, . . . , vn is a basis of V . Suppose we
know what the elements of T (v1), T (v2), . . . , T (vn) ∈W are.

Let v ∈ V . Then v = a1v1 + . . .+ anvn, ai ∈ F and T (v) is already defined:

T (v) = T (a1v1 + . . .+ anvn)

= T (a1v1) + . . .+ T (anvn)

= a1T (v1) + . . .+ anT (vn).

Proposition 12.3 (Axler 3.5)

Suppose v1, . . . , vn ∈ V is a basis of V and w1, . . . , wn is any list of vectors in W .
Then there is exactly one linear map T : V →W sending vi 7→ wi for each i.

More precisely, for any v = a1v1 + . . .+ anvn ∈ V , the linear map in Proposition 12.3 is
the map T (v) = a1w1 + . . .+ anwn.

§12.1 Kernels

Definition 12.4. Let T ∈ L (V,W ). The kernel, or null space, of the map T is

ker(T )
def
= {v ∈ V | T (v) = ~0W }.

Remark 12.5. T (~0V ) = ~0W =⇒ ~0V ∈ ker(T ) always.

Example 12.6 (Kernels of Common Linear Maps)

The kernels of some common linear maps:

• The zero map 0 ∈ L (V,W ) has ker(0) = V .

• The identity map IdV ∈ L (V,W ) has ker(Idv) = {~0}.

• The differentiation map D ∈ L (V,W ) has kerD = {c | c ∈ R}.

• The shift map shift ∈ L (F∞,F∞) has ker(shift) = {(a, 0, 0, . . . , ) | a ∈ F}.

19
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Lemma 12.7 (Kernel of a Linear Map is a Subspace)

If T ∈ L (V,W ), then ker(T ) is a subspace of V .

Proof. Check each of the properties.

Definition 12.8. A map is injective if T (u) = T (v) =⇒ u = v.

§13 September 19, 2018

Proposition 13.1 (Injective Maps Have a Trivial Kernel)

A linear map is injective ⇐⇒ ker(T ) = {~0V }.

Proof. Suppose T is injective and let v ∈ kerT . We know that T (v) = ~0W = T (~0V ), but
since T is injective, v = ~0V .

Conversely, suppose kerT = {~0V }. Suppose ∃u, v ∈ V such that T (u) = T (v).
Then ~0W = T (u) − T (v) = T (u − v), but since the kernel of T only contains ~0V , then
u− v = ~0V =⇒ u = v, so T is injective.

§13.1 Images

Let T ∈ L (V,W ).

Definition 13.2. The image of T is Im(T ) = {w ∈W | w = T (v), v ∈ V }.

Claim 13.3. Im(T ) ⊆W is a subspace, e.g. ~0W ∈ Im(T ), since T (~0V ) = ~0W .

Example 13.4

Some examples:

1. 0 ∈ L (V,W ), Im 0 = {~0W }

2. IdV ∈ L (V, V ), Im(IdV ) = V

3. Differentiation D ∈ L (P(R),P(R)), Im(D) = P(R)

Definition 13.5. A map T ∈ L (V,W ) is surjective if for every w ∈ W , there exists
v ∈ V such that T (v) = w, i.e. Im(T ) = W .

Example 13.6

D = L (P5(R),P5(R)) differentiation is not surjective since x5 /∈ ImD.

Let V be a finite dimensional vector space over F and suppose T ∈ L (V,W ).

Theorem 13.7 (Rank-Nullity Theorem)

dimV = dim(kerT ) + dim(ImT )
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The Rank-Nullity Theorem also tells us that ImT is finite dimensional.

Proof. Let u1, . . . , un be a basis for kerT . Note that dim(kerT ) = n.
We extend this to a basis for V : u1, . . . , un, v1, . . . , vm, so dimV = n+m.
We claim that T (v1), . . . , T (vm) is a basis for Im(T ), in particular Im(T ) is finite

dimensional.
First, we show that the list spans ImT . let w ∈ ImT . Then w = T (v) for some v ∈ V .

We have v = a1u1 + . . . + anun + b1v1 + . . . + bmvm, so w = T (v) = a1T (u1) + . . . +
anT (un) + b1(T (v1) + . . . + bmT (vm) = b1T (v1) + . . . + bmT (vm) since the ui’s are in
kerT . This means that w ∈ span(T (v1), . . . , T (vm)).

Now, we show that the list is linearly independent. Suppose ~0W = c1T (v1) + . . . +
cmT (vm) = T (c1v1)+. . .+T (cmvm) = T (c1v1+. . .+cmvm), i.e. c1v1+. . .+cmvm ∈ kerT .
Since kerT has the ui’s as a basis, we have c1v1 + . . .+ cmvm = d1u1 + . . .+ dnun, then
~0V = d1u1+ . . .+dnun−c1v1− . . .−cmvm. Since u1, . . . , un, v1, . . . , vn are a basis of V by
assumption, this forces c1 = . . . = cm = d1 . . . = dn = 0, so the only way to write ~0W as
a linear combination of the T (vi)’s is when all coefficients are zero, i.e. T (v1), . . . , T (vm)
is a basis of ImT .

§14 September 21, 2018

Corollary 14.1 (Linear Maps to Lower Dimensions Are Not Injective)

Suppose dimV > dimW . Then any linear map T : V →W cannot be injective.

Proof. By the Rank-Nullity Theorem,

dim kerT = dimV − dim ImT ≥ dimV − dimW > 0

So kerT 6= {~0V }.

Corollary 14.1 can be applied to systems of linear equations:
a1,1x1 + . . .+ a1,nxn = 0
...

...
...

...
...

am,1x1 + . . .+ am,nxn = 0
We observe that one solution of this is x1 = . . . = xn = 0.

We can rephrase this as: T : Rn → Rm

x1...
xn

 7→
 a1,1x1 + . . .+ a1,nxn

...
am,1x1 + . . .+ am,nxn


Is kerT = {~0V }?
If n > m, then kerT 6= {~0V }. More variables than the number of equations implies

that we get solutions to the homogeneous systems!

§15 September 24, 2018

Corollary 15.1 (Linear Maps to Higher Dimensions Are Not Surjective)

Suppose dimV < dimW . Then any linear map T : V →W cannot be surjective.

Proof. dim(ImT ) = dimV − dim kerT ≤ dimV < dimW . So ImT 6= W =⇒ T is not
surjective.
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§15.1 Matrices

The Matrix of Linear Map

Let V,W be finite dimensional vector spaces and T ∈ L (V,W ).
We choose bases v1, . . . , vn of V and w1, . . . , wm of W .Then
T (v1) ∈W means T (v1) = a1,1w1 + a2,1w2 + . . .+ am,1wm
T (v2) ∈W means T (v2) = a1,2w1 + a2,2w2 + . . .+ am,2wm
...
T (vn) ∈W means T (vn) = a1,nw1 + a2,nw2 + . . .+ am,nwm
Recall that a linear map is determined by what it does to a basis. So the array of numbers

a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n

...
...

...
...

am,1 am,2 . . . am,n


↑ ↑ ↑

T (v1) T (v2) . . . T (vn)

encodes T . This is called the matrix of T with respect to v1, . . . , vn and w1, . . . , wm.
Notation: M(T, (v1, . . . , vn), (w1, . . . , wm)) or M(T ).

Example 15.2 (Importance of the Choice of Bases)

T : F2 → F3 mapping (x, y) 7→ (x+ 3y, 2x+ 5y, 7x+ 9y) has

M(T ) =

1 3
2 5
7 9


if we choose the standard bases for F2 and F3. However, if instead we choose the
basis v′1 = (1, 1) and v2 = (3,−1) for V but keep the standard basis for W , we would
get T (v′1) = (4, 7, 16), T (v′2) = (0, 1, 12) so

M(T ) =

 4 0
7 1
16 12
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Example 15.3 (Differentiation)

For D ∈ L (P3(R),P2(R)), if we choose the basis P3(R) : 1︸︷︷︸
v1

, x︸︷︷︸
v2

, x2︸︷︷︸
v3

, x3︸︷︷︸
v4

,

P2(R) : 1︸︷︷︸
w1

, x︸︷︷︸
w2

, x2︸︷︷︸
w3

,

D(1) = 0 =0 · w1 + 0 · w2 + 0 · w3

D(x) = 1 =1 · w1 + 0 · w2 + 0 · w3

D(x2) = 2x =0 · w1 + 2 · w2 + 0 · w3

D(x3) = 3x2 =0 · w1 + 0 · w2 + 3 · w3

so

M(T ) =

0 1 0 0
0 0 2 0
0 0 0 3



§16 September 26, 2018

We know that linear maps can be encoded by matrices, and we also know that LL(V,W )
is itself a vector space over F. This means that linear maps can be added, scaled, and
composed. Below we examine what happens to the corresponding matrices under these
operations.

1. Addition: S, T ∈ L (V,W ) =⇒ (S + T )(v) = S(v) + T (v).
We choose bases v1, . . . , vn of V and w1, . . . , wm of W .
Looking at the kth column, if we have S(vk) = a1,kw1 + . . .+ am,kwm and T (vk) =
b1,kw1 + . . .+ bm,kwm, then

M(S) =

a1,1 . . . a1,n
...

...
...

am,1 . . . am,n

 M(T ) =

 b1,1 . . . b1,n
...

...
...

bm,1 . . . bm,n


↑ ↑

S(v1) . . . S(vn)
↑ ↑

T (v1) . . . T (vn)

(S + T )(vk) = S(vk) + T (vk)
= (a1,k + b1,k)w1 + . . .+ (am,k + bm,k)wm, so

M(S + T ) =

 a1,1 + b1,1 . . . a1,n + b1,n
...

...
...

am,1 + bm,1 . . . am,n + bm,n


i.e. we can define addition of matrices entry by entry M(S) +M(T )

def
= M(S + T )

2. Scalar Multiplication: Then (λT )(vk) = λT (vk) = λ(a1,kw1 + . . . + am,kwk) =
λa1,kw1 + . . .+ λam,kwk

M(λT ) =

λa1,1 . . . λa1,n
...

...
...

λam,1 . . . λam,n
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λM(T )
def
= M(λT ).

3. Composition:

U
T−→ V

S−→W

We choose bases (u1, . . . , ur), (v1, . . . , vn), (w1, . . . , wm) of U, V,W respectively.

T (uj) = b1,jv1 + . . .+ bn,jvn S(vk) = a1,kw1 + . . .+ am,kwm

M(T ) =

 b1,1 . . . b1,n
...

...
...

bm,1 . . . bm,n

 M(S) =

a1,1 . . . a1,n
...

...
...

am,1 . . . am,n


S ◦ T (uj) = S(T (uj))
= S(b1,jv1 + . . .+ bn,jvn)
= S(b1,jv1) + . . .+ S(bn,jvn)
= b1,jS(v1) + . . .+ bn,jS(vn)
= b1,j(a1,1w1 + . . .+ am,1wm) + . . .+ bn,j(am,1w1 + . . .+ am,nwm)
= (b1,ja1,1 + b2,ja1,2 + . . .+ bn,ja1,n)w1 + . . .

=

(
n∑
k=1

a1,kbk,j

)
w1 + . . .+

(
n∑
k=1

am,kbk,j

)
wm.

Definition 16.1. Define matrix multiplication by
. . .

ai,j
. . .

 ·


. . .

bi,j
. . .

 =


. . .

ci,j
. . .


with ci,j =

n∑
k=1

ai,kbk,j

Definition 16.2. Fm,n def
= matrices with m rows, n columns and its entries in F.

Define addition and scalar multiplication as we just did. Then Fm,n is a vector space
over F.

§17 September 28, 2018

Suppose A is an m× n matrix over R.

A =

a1,1 . . . a1,n
...

. . .
...

am,1 . . . am,n

 .

Then A = M(TA), where TA : Rn → Rm with standard bases (0, . . . , 1︸︷︷︸
kth entry

, . . . , 0) 7→

(a1,k, a2,k, . . . , am,k)

Proposition 17.1 (Matrix Multiplication is Associative)

If A,B,C are matrices, then (A ·B) · C = A · (B · C).
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Proof. We’ll view each matrix in terms of linear maps.
A←→ TA : Rn → Rm
B ←→ TB : Rp → Rn
C ←→ TC : Rr → Rp, so

(A ·B) · C = (M(TA) ·M(TB)) ·M(TC)

= (M(TA ◦ TB)) ·M(TC)

= M((TA ◦ TB) ◦ TC)

= M(TA ◦ (TB ◦ TC))

= M(TA) ·M(TB ◦ TC)

= M(TA) · (M(TB) ·M(TC))

= A · (B · C).

§17.1 Invertible Linear Maps

Definition 17.2. T ∈ L (V,W ) is invertible if ∃S ∈ L (W,V ) such that S ◦ T = IdV
and T ◦ S = IdW .

Definition 17.3. If S is the inverse of T , then S
def
= T−1.

Remark 17.4. Inverses, when they exist, are unique.

Proof. Say S1, S2 ∈ L (W,V ) are both inverses of T ∈ L (V,W ). Then

S1 = S1 ◦ (T ◦ S2) = (S1 ◦ T ) · S2 = S2.

Theorem 17.5 (Invertible Maps are Both Injective and Surjective)

T ∈ L (V,W ) is invertible ⇐⇒ T is injective and surjective.

Proof. Suppose T is invertible, and let T−1 be its inverse.
Then T is injective. Indeed, if ∃u, v ∈ V such that T (u) = T (v), then

u = T−1(T (u)) = T−1(T (v)) = v

so T is injective.
T is also surjective. Indeed, let w ∈W . Then

w = T (T−1(w))

=⇒ w ∈ Im(T ). Since w was arbitrary, T is surjective.
Now suppose T is both injective and surjective. We’ll define an inverse for T .
Let S : W → V mapping w 7→ the unique v ∈ V such that T (v) = w. We claim that

S is linear.
Indeed, T (S(w1) + S(w2)) = T (S(w1)) + T (S(w2)) = w1 + w2 = T (S(w1 + w2)) so

that S(w1) + S(w2) = S(w1 + w2), showing that S is additive.
Moreover, T (λS(w)) = λT (S(w)) = λw so λS(w) = S(T (λS(w))) = S(λw), so S is

homogenous. Hence, S is linear.
T ◦ S = IdW by definition of S and S ◦ T = IdV . Indeed, let v ∈ V . Then

T ◦ (S ◦ T )(v) = (T ◦ S) ◦ T (v) = T (v). T injective means (S ◦ T )(v) = v.
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§18 October 1, 2018

§18.1 Isomorphism

Definition 18.1. An invertible map T ∈ L (V,W ) is called an isomorphism.

This is denoted by V 'W , i.e. ∃ an isomorphism T ∈ L (V,W ).
Let V,W be finite dimensional vector spaces. Then we have the following proposi-

tion.

Proposition 18.2 (Isomorphism Means Equal Dimension)

V 'W ⇐⇒ dimV = dimW .

Proof. Note that V ' W means ∃ invertible T ∈ L (V,W ). We apply Theorem 13.7:
dimV = dim(kerT ) + dim(ImT ) = 0︸︷︷︸

T is injective

+ dimW︸ ︷︷ ︸
T is surjective

= dimW.

Conversely, if dimV = dimW , then we can construct an invertible T ∈ L (V,W ).
Indeed, let v1, . . . , vn be a basis for V and w1, . . . , wn a basis for W . By Axler 3.5, there
exists a unique linear map T : V →W such that T (vi) = wi for 1 ≤ i ≤ n.

We show that T is surjective. Indeed, let w ∈ W such that w = a1w1 + . . . + anwn
for ai ∈ F. We note that T (a1v1 + . . . + anvn) = a1w1 + . . . + anwn = w. Hence,
w ∈ ImT =⇒ W ⊆ ImT , and since ImT ⊆W by definition, T is surjective.
T is also injective. Indeed, we apply rank-nullity.

dimV = dim(kerT ) + dim(ImT ) = dim(kerT ) + dimW =⇒ dim kerT = 0 =⇒
kerT = {~0v}. This concludes the proof.

Example 18.3 (V 'W ⇐⇒ dimV = dimW )

P3(C) and C4 are isomorphic.

Proof. We choose bases for each vector space and follow the recipe from the previous proof.

∃!T : P3(C)→C4

1 7→(1, 0, 0, 0)

x 7→(0, 1, 0, 0)

x2 7→(0, 0, 1, 0)

x3 7→(0, 0, 0, 1)

and this maps a0 + a1x+ a2x
2 + a3x

3 7→ (a1, a2, a3, a4).
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Example 18.4

Let V,W are finite dimensional vector spaces over F. We choose bases v1, . . . , vn of
V and w1, . . . , wm of W . Then

M : L (V,W )→Fm,n

T 7→M(T, (v1, . . . , vn), (w1, . . . , wm))

TA ←[A

is an isomorphism.

Corollary 18.5

dim L (V,W ) = dimFm,n = m · n.

Definition 18.6. A linear map T : V → V is called an endomorphism (or an operator
of V ).

Notation: L (V )
def
= L (V,W ).

Example 18.7

We have the following

1. T ∈ L (P(R))

T : P(R) → P(R)

f 7→ x2f

is injective, but not surjective

2. S : C∞ → C∞ with (x1, x2, x3, . . .) 7→ (x2, x3, . . .) is surjective but not injective.

Theorem 18.8 (Injectivity, Surjectivity, and Invertibility of Endomorphisms)

Let V be a finite dimensional vector space. Let T ∈ L (V ). Then the following are
equivalent:

1. T is injective.

2. T is surjective.

3. T is invertible.

Proof. It suffices to show that (1) =⇒ (2), (2) =⇒ (3), (3) =⇒ (1), but the last two
have actually been shown in Theorem 17.5.

(1) =⇒ (2): T is injective means that kerT = {~0V }. By Rank-Nullity, dimV =
dim kerT + dim ImT since T : V → V , ImT ⊆ V and says dimV = dim ImT so
V = ImT , i.e. T is surjective.
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Example 19.1

Show that for q ∈ P(R), there exists p ∈ P(R) such that q = [(x2 + 2x+ 3) · p)]′′

Proof. We first restrict ourselves to the finite dimensional setting. Let T : Pm(R) →
Pm(R) mapping p 7→ [(x2 + 2x+ 3) · p]′′. Check that this is a linear map. We need to
show that T is surjective, but by Theorem 18.8, it suffices to show that T is injective.

We look at kerT . The only polynomials that have second derivatives equal to 0 are of
the form ax+ b, so p ∈ kerT if p · (x2 + 2x+ 3) = ax+ b. This forces p to be the zero
polynomial. Thus, kerT = {~0} =⇒ T is injective.

Remark 19.2. The proof of Example 19.1 actually shows that p is unique.

§19.1 Linear Maps as Matrix Multiplication

Let V be a finite dimensional vector space with basis v1, . . . , vn and T ∈ L (V,W ). Let
v ∈ V . Then v = c1v1 + . . .+ cnvn for ci ∈ F.

Define M(v) =

c1...
cn

. e.g., V = P3(R), v1 = 1, v2 = x, v3 = x3, v4 = x3, so v =

2− 7x+ 5x3 =⇒ M(v) =


2
−7
0
5

.

Claim 19.3. M(T (v)) = M(T ) ·M(v).

Proof. T (v) = T (c1v1+ . . .+cnvn) = c1T (v1)+ . . .+cnT (vn), so we have that M(T (v)) =
c1 ·M(T (v1)) + . . .+ cnM(T (vn)).

M(T ) =

a1,1 a1,2 . . . a1,n
...

...
. . . . . .

am,1 am,2 . . . am,n

T (v1) T (v2) T (vn)

Note that M(T (vk)) = kth column =

a1,k
...

am,k

. Thus, M(T (v)) = c1

a1,1
...

am,1

 + · · · +

cn

a1,n
...

am,n

 =

 c1a1,1 + · · ·+ cna1,n
...

c1am,1 + · · ·+ cnam,n

 = M(T ) ·M(v).

§19.2 Product of Vector Spaces

Let V1, . . . , Vm be vector spaces over F.

Definition 19.4. V1 × . . .× Vm
def
= {(v1, . . . , vn) | vi ∈ Vi}.

Thus, elements of R2 × R3 look like ((x1, x2), (y1, y2, y3)) and elements of P2(R)× R2

look like (a0 + a1x+ a2x
2, (z1, z2)).
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Define addition and scalar multiplication component-wise, i.e.

(v1, . . . , vm) + (v′1, . . . , v
′
m) = (v1 + v′1, v2 + v′2, . . . vm + v′m).

This makes the product into a vector space over F.

Proposition 19.5

Let V1, . . . , Vm be finite dimensional vector spaces. Then V1 × . . . × Vm is also a
finite dimensional vector space and

dim(V1 × . . .× Vm) = dimV1 + . . .+ dimVm.

Proof. Let vi,j , 1 ≤ j ≤ n be a basis for Vi. Then (0, 0, . . . , vi,jk︸︷︷︸
ith slot

, 0, 0, . . . , 0) is a basis.

§20 October 5, 2018

Connection to Direct Sums

Say U1, . . . , Um ⊆ V are all subspaces. Define Γ : U1× . . .×Um → U1 + . . .+Um mapping
(u1, . . . , um) 7→ u1 + . . .+ um. Check that this is linear.

Remark 20.1. Γ is injective ⇐⇒ the only way to write ~0 = u1 + . . .+ um is to take
ui = ~0 for all i, i.e. U1 + . . .+ Um is a direct sum.

Remark 20.2. Γ is surjective.

Remark 20.3. If V if finite dimensional, then U1, . . . , Um are also finite dimensional
=⇒ U1 × . . .× Um is finite dimensional.

Proposition 20.4 (Additivity of Dimensions in Direct Sums)

If U1, . . . , Um ⊆ V are subspaces of a finite dimensional vector space, then U1 + . . .+
Um = U1 ⊕ . . .⊕ Um ⇐⇒ dim(U1 + . . .+ Um) = dim(U1) + . . .+ dim(Um).

Proof. The sum is direct ⇐⇒ Γ is injective ⇐⇒ ker Γ = {~0}. By Rank-Nullity,

dim(U1 × . . .× Um) = dim ker Γ + dim Im Γ

⇐⇒ dimU1 + . . .+ dimUm = 0 + dim(U1 + . . .+ Um).

§20.1 Affine Subsets

Let V be a vector space over F, U ⊆ V be a subspace and v ∈ V .

Definition 20.5. v + U =
def
= {v + u | u ∈ U} is called the affine subset parallel to U .
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Example 20.6

V = R2, U = {(x, 2x) | x ∈ R} with v1 = (3, 1), v2 = (4, 3) has

v1 + U := {(3 + x, 1 + 2x) | x ∈ R}
v2 + U := {(4 + x, 3 + 2x) | x ∈ R}.

Note that v1 + U = v2 + U even if v1 6= v2.

Remark 20.7. In the above example, the affine subsets are no longer subspaces because
they do not contain (0, 0). In general, affine subsets parallel to U need not be subspaces.

Lemma 20.8 (Parallel Affine Subsets Are Equal or Disjoint)

The following statements are equivalent:

(i) v1 + U = v2 + U

(ii) v1 − v2 ∈ U

(iii) (v1 + U) ∩ (v2 + U) 6= 0

Proof. (ii) =⇒ (i): Suppose v1 − v2 ∈ U . Let v ∈ v1 + U . So v = v1 + u for some u ∈ U ,
i.e. v = v2 + (v1 = v2) + u︸ ︷︷ ︸

∈U

∈ v2 + U . Thus, v1 + U ⊆ v2 + U . Similarly, we’ll have

v2 + U ⊆ v1 + U .
(i) =⇒ (iii): Clear
(iii) =⇒ (ii): Suppose w ∈ (v1 + U) ∩ (v2 + U). Then w = v1 + u and w = v2 + u′ with
u, u′ ∈ U . So ~0 = v1 + u− (v2 + u′) =⇒ ~0 = (v1− v2) + (u− u′) =⇒ v1− v2 = u′− u ∈
U .

§20.2 Quotient Vector Spaces

Definition 20.9. The quotient V/U is the set of all affine subsets parallel to U .

V/U
def
= {v + U | v ∈ V }.

Example 20.10

V = R2, U = {(x, 2x) | x ∈ R} has V/U as the set of all lines parallel to U , i.e. all
lines in R2 with slope 2.
Note that an element of R2/U is a whole line in R2.

Example 20.11

Let V = R3 andU be a plane through the origin. Then R3/U is the set of all planes
parallel to U .

V/U is a vector space.

Definition 20.12. Addition: (v1 + U) + (w + U)
def
= (v + w) + U .

Definition 20.13. Scalar Multiplication: λ · (v + U)
def
= λv + U .
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We check that the operations are well-defined (independent of a choice), i.e. if v + U =
v′ + U , and w + U = w′ + U , then (v + w) + U = (v′ + w′) + U .
v + U = v′ + U ⇐⇒ v − v′ ∈ U and w + U = w′ + U ⇐⇒ w −w′ ∈ U by Lemma 20.8.
Since U is a subspace, v−v′+w−w′ ∈ U ⇐⇒ (v+w)−(v′+w′) ∈ U ⇐⇒ (v+w)+U =
(v′ + w′) + U .

We also check for scalar multiplication.
v − v′ ∈ U ⇐⇒ λ(v − v′) ∈ U ⇐⇒ λv − λv′ ∈ U ⇐⇒ λv + U = λv′ + U .

So the operations are indeed well-defined.

§21.1 Quotient Map

π :V → V/U

v → v + U

Suppose that V is finite dimensional, then so is U .
Rank-nullity theorem states that dimV = dim kerπ + dim Imπ.

Proposition 21.1

π is surjective =⇒ Imπ = V/U .

Proof. kerπ = {v ∈ V | v + U = ~0 + U} = U .

This tells us something important.

Corollary 21.2

dimV = dimU + dim(V/U)

§21.2 First Isomorphism Theorem

Let T ∈ L (V,W ). Define

T̃ :V/ kerT → ImT

v + kerT 7→ T (v)

A B

A/ ker(f)

T

π T̃

We’ll prove the following claims:

1. T̃ is well-defined.

Proof. If v1 + kerT = v2 + kerT , then T (v1) = T (v2) because v1 − v2 ∈ kerT =⇒
T (v1 − v2) = ~0 =⇒ T (v1) = T (v2).

2. T̃ is injective.
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Proof. Suppose T̃ (v+ kerT ) = ~0 . Then T (v)−~0 =⇒ v ∈ kerT ⇐⇒ v+ kerT =
~0 + kerT .

3. T̃ is surjective.

Proof. Let w ∈ ImT . Then T (v) = w for some v ∈ V =⇒ T̃ (v + kerT ) = T (v) =
w.

This proves that V/ kerT is isomorphic to ImT .

Proposition 21.3

V/ kerT ' ImT

§21.3 Duality

Let V be a vector space over F.

Definition 21.4. V ′
def
= L (V,F) is called the dual space of V .

If V is finite dimensional, then dimV = dim L (V,F).

Definition 21.5. φ ∈ L (V,F) is called a linear functional.

Example 21.6

Some linear functionals:

1. V = R3,F = R, φ : R3 → R.

§22 October 12, 2018

§22.1 Dual Bases

Suppose V is a finite dimensional vector space. Choose a basis v1, . . . , vn. Define

φi : V → F

vj 7→

{
1 if i = j

0 otherwise

Definition 22.1. The shorthand φi(vj) = δi,j is the Kronecker delta function.

The list φ1, . . . , φn is called dual basis of V ′ with respect to v1, . . . , vm.

Example 22.2

For V = R3,F = R and standard bases e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1),

φ1((x1, x2, x3))

=φ1(x1e1 + x2e2 + x3e3)

=x1φ1(e1) + x2φ1(e2) + φ1(e3)

=x1

In general, φi((x1, x2, x3)) = xi.
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Theorem 22.3 (Dual Basis is a Basis)

φ1, . . . , φn are a basis of V ′.

Proof. Linear independence: Suppose that a1φ1 + . . . + anφn = 0 in L (V,F). Then
a1φ1(vi) + . . .+ anφn(vi) = 0 =⇒ ai = 0. So the list is linearly independent.
Span: dimV ′ = n and φ1, . . . , φn are linearly independent, so they span the vector
space.

§22.2 Dual Maps

Let T ′ ∈ L (V,W ).

Construct T ′ : W ′ → V ′(T ′ ∈ L (W ′, V ′))

φ : W → F 7→ φ ◦ T : V → F

That is T ′(φ) = φ ◦ T as elements of V ′

Example 22.4

D ∈ L (P5(R),P4(R)) and D′ ∈ L (P4(R)′,P5(R)′).
Let’s take an actual φ ∈ P4(R)′, e.g.

φ : P4(R) → R

p 7→
∫ 1

0
p

Then

D′(φ) : P3(R) → R

f 7→ (φ ◦D)(f) =

∫ 1

0
f ′ = f(1)− f(0)

Claim 22.5. T ′ is linear.

Proof. φ, ψ ∈W ′. Then

T ′(φ+ ψ) = (φ+ ψ) ◦ T
= φ ◦ T + ψ ◦ T
= T ′(φ) + T ′(ψ)

T ′(λ · φ) = (λ · φ) ◦ T
= λ · (φ ◦ T )

= λ · T ′(φ).

Properties of T ′

For T, S ∈ L (V,W )

1. (T + S)′ = T ′ + S′
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2. (λ · T )′ = λ · T ′

3. (S ◦ T )′ = T ′ ◦ S′. U T−→ V
S−→W =⇒ W ′

S′
−→ V ′

T ′
−→ U ′

Proof of (3).

(S ◦ T )′(φ) = φ ◦ (S ◦ T )

= (φ ◦ S) ◦ T
= T ′(φ ◦ S)

= T ′(S′(φ)) = (T ′ ◦ S′)(φ)

We want to describe kerT ′ and ImT ′ in terms of kerT and ImT .
Let U ⊆ V be a subspace

Definition 22.6. The annihilator U0 ⊆ V ′ is

U0 def
= {φ ∈ V ′ | φ(u) = 0∀u ∈ U}.

Uposhot: kerT ′ = (ImT )0 and ImT ′ = (kerT )0.

Example 22.7

V = R5 with standard basis e1, . . . , e5. V ′ has dual basis φ1, . . . , φ5 with φi(ej) = δi,j
U = span(e1, e2) ⊆ V . Then U0 = span(φ3, φ4, φ5).

§23 October 15, 2018

Proof. We show that U0 ⊆ span(φ3, φ4φ5). Let φ ∈ U0. Then φ = a1φ1 + . . .+ a5φ5 and
φ(e1) = 0 = φ(e2).

Thus 0 = φ(e1) = a1φ(e1) + a2φ2(e1) + . . .+ a5φ1(e5) = a1. Similarly, a2 = 0, so that
φ = a3φ3 + a4φ4 + a5φ5

We now show that span(φ3, φ4, φ5) ⊆ U0.
Let φ = a3φ3 + a4φ4 + a5φ5 be in span(φ3, φ4, φ5) and let u ∈ U , so u = a1e1 + a2e2.
So φ(u) = a3φ3(a1e1+a2e2)+. . .+a5φ5(a1e1+a2e2) = a3a1φ3(e1)+a3a2φ3(e2)+. . . = 0.

So φ ∈ U0.

Exercise 23.1. U0 = {φ ∈ V ′ | φ(u) = 0 ∀u ∈ U} is a subspace of V ′.

Proposition 23.2

dimV = dimU + dimU0

Proof. Let u1, . . . , un be a basis of U . Extend this to a basis of V : u1, . . . , un, un+1, . . . , un+m.
Let φ1, . . . , φn+m be a dual basis for V ′, i.e. φi(uj) = δi,j . We claim that φn+1, . . . , φn+m
is a basis of U0.

Linear independence: Suppose an+1φn+1 + . . . + an+mφn+m = 0 in V ′. Plug in
un+j =⇒ an+j = 0.

span: Let φ ∈ U0 ∈ V ′, φ = a1φ1 + . . .+ an+mφn+m Then by definition of annihilator
of U , φ(u1) = φ(u2) = . . . = φ(un) = 0 =⇒ a1 = a2 = . . . = an = 0. Hence
φ = an+1φn+1 + . . . + an+mφn+m, so U0 ⊆ span(φn+1, . . . , φn+m). The other direction
follows from the definition of φj ’s. Finally, dimU0 = m.

Remark 23.3. U0 is not a subspace of V .
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Theorem 23.4

Let V,W be finite dimensional vector spaces and T ∈ L (V,W ), so T ′ ∈ L (W ′, V ′).
Then

1. kerT ′ = (ImT )0

2. ImT ′ = (kerT )0.

Proof. 1. φ ∈ kerT ′ ⊆W ′
⇐⇒ φ ◦ T = 0 as maps in V ′

⇐⇒ (φ ◦ T )(v) = 0 ∀ v ∈ V
⇐⇒ φ(T (v)) = 0 ∀ v ∈ V
⇐⇒ φ(w) = 0 ∀w ∈ ImT
⇐⇒ φ ∈ (ImT )0.

2. Let φ ∈ ImT ′. Then φ = T ′(ψ) = ψ ◦ T for some ψ ∈W ′.
Let v ∈ kerT . Then φ(v) = ψ(T (v)) = ψ(~0) = 0 =⇒ φ ∈ (kerT )0.

To finish, it suffices to show that dim ImT ′ = dim(kerT )0.

dim ImT ′ = dimW ′ − dim kerT ′

= dimW ′ − dim(ImT )0

= dimW − dim(ImT )0

= dim ImT

= dimV − dim kerT

= dim(kerT )0

Remark 23.5. This proof also shows that dim ImT = dim ImT ′.

Corollary 23.6

dim kerT ′ = dim kerT + dimW − dimV

Proof.

dim kerT ′ = dim(ImT )0

= dimW − dim ImT

= dimW − (dimV − dim kerT )

Remark 23.7. If dimV = dimW , then dim kerT = dim kerT ′.

Corollary 23.8

Let V,W be finite dimensional vector spaces and T ∈ L (V,W ).

(1) T is injective ⇐⇒ T ′ is surjective.

(2) T is surjective ⇐⇒ T ′ is injective.

Proof of (1). T is injective ⇐⇒ kerT = {~0} ⇐⇒ (kerT )0 = V ′ ⇐⇒ ImT ′ =
V ′ ⇐⇒ T ′ is surjective.
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§24 The Matrix of the Dual Map

Consider T : V →W with finite dimensional vector spaces V,W having bases v1, . . . , vn
and w1, . . . , wm respectively.
T had dual map T ′ : W ′ → V ′ with W ′, V ′ having the dual bases ψ1, . . . , ψm such that

ψi(wj) = δi,j and φ1, . . . , φn such that φi(vj) = δi,j as their bases respectively.

Claim 24.1. M(T ′, (ψ1, . . . , ψm), (φ1, . . . , φn)) =M(T, (v1, . . . , vn), (w1, . . . , wm))t

Recall: The transpose of a matrix A is At where (At)i,j = Aj,i.

e.g. A =

1 2
3 4
5 6

 At =

(
1 3 5
2 4 6

)

Proof of Claim. Say M(T ) =

a1,1 . . . a1,n
...

. . .
...

am,1 . . . am,n

 and M(T ′) =

c1,1 . . . c1,m
...

. . .
...

cn,1 . . . cn,m

.

Note that this means T ′(ψj) = c1,jφ1 + . . .+ cn,jφn.
Then (ψj ◦ T )(vi) = ψj(T (vi)) = ψj(a1,iw1 + . . . + am,iwm) = a1,iψj(w1) + . . . +

am,iψj(wm) = aj,i
We also have that c1,jφ1(vi) + . . .+ cn,jφn(vi) = 0 + . . .+ ci,j · 1 + . . .+ 0 = ci,j .
Together, this shows that ci,j = aj,i.

Corollary 24.2

row rank = column rank

m× n matrix A =

a1,1 . . . a1,m
...

. . .
...

am,1 . . . am,n

 ∈ Fm,n.

Definition 24.3. The column span ofA is CS(A) span((a1,1, . . . , am,1), . . . , (a1,n, . . . , am,n)) ⊆
Fm.

Definition 24.4. The row span is RS(A) span((a1,1, . . . , a1,n), . . . , (am,1, . . . , am,n)) ⊆
Fn.

§25 October 19, 2018

Theorem 25.1 (Rank of a Matrix)

The column rank of A is equivalent to the row rank of A.

Proof. A = M(TA) for TA · Fn → Fm with respect to the standard bases. A =
...

...
...

TA(e1) TA(e2) . . . TA(en)
...

...
...

, so CS(A) = span(TA(e1), . . . , TA(en)) = ImTA and

dimCS(A) = dim ImTA. But since dim ImTA = dim ImT ′A, and dim ImT ′A = dimCS(At) =
dimRS(A).
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§25.1 Invariant Subspaces

Our goal is to understand linear operators T ∈ L (V ) for a finite dimensional vector space
V . We do this by breaking up the problem into smaller pieces, e.g. V = U1 ⊕ . . .⊕ Un.

So we can first restrict our attention by considering T |Ui : Ui → V . The issue with this
method is that ImT |Ui might lie in Ui. This is where the notion of an invariant subspace
comes in.

Definition 25.2. U ⊆ V is an invariant subspace under T if T |U ∈ L (U), i.e.
ImT |U ⊆ U (∀u ∈ U, T (u) ∈ U).

Example 25.3

The following are examples of invariant subspaces:

• U = {~0} is trivially an invariant subspace: T (~0) = ~0.

• U = V , ImT ⊆ V .

• U = kerT , u ∈ kerT =⇒ T (u) = ~0 ∈ kerT .

A natural question to ask is what invariant subspaces of dimension 1 look like.
To see this, we let U = span(v), v 6= 0. To say that T (v) ∈ U means that T (v) = λv

for some λ ∈ F. Conversely, if T (v) = λv for some v 6= ~0, then U = span(v) is a
1-dimensional invariant subspace. When this happens, λ is called an eigenvalue of T .
If v 6= ~0, then v is called an eigenvector of T corresponding to λ.

Proposition 25.4

The following are equivalent:

1. λ is an eigenvalue of T .

2. T − λ · IdV is not injective.

3. T − λ · IdV is not surjective.

4. T − λ · IdV is not invertible.

Proof. We’ll prove that (1)⇐⇒ (2).
T (v) = λv ⇐⇒ T (v) − λv = ~0 ⇐⇒ (T − λIdV )(v) = 0 ⇐⇒ T − λIdV is not

injective.
(2)⇐⇒ (3)⇐⇒ (4) since (T − λIdV ) ∈ L (V ).

Eigenvectors for distinct eigenvalues are linearly i

Proposition 25.5

Let T ∈ L (V ) and λ1, . . . , λm be distinct eigenvalues with eigenvectors v1, . . . , vm.
Then v1, . . . , vm are linearly independent.
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§26 October 22, 2018

Proof. Suppose v1, . . . , vm is linearly dependent. Then by the linear dependence lemma,
there is a smallest k such that vk ∈ span(v1, . . . , vk−1), where v1, . . . , vk−1 are linearly
independent. Then vk = a1v1+ . . .+ak−1vk−1 =⇒ T (vk) = a1λ1v1+ . . .+ak−1λk−1vk−1.
So we have

0 = λkvk − T (vk) = (a1λk − a1λ1)v1 + . . .+ (ak−1λkvk−1)vk−1

= a1(λk − λ1)v1 + . . .+ ak−1(λk − λk−1)vk−1

but since v1, . . . , vk−1 are linearly independent, then ai(λk − λi) = 0 for 1 ≤ i ≤ k − 1.
This forces ai = 0 since λk 6= λi by assumption. This is a contradiction.

Corollary 26.1 (Number of Eigenvalues ≤ Dimension)

Let dimV = n. Then T ∈ L (V ) has at most n distinct eigenvalues.

Proof. Suppose λ1, . . . , λm are distinct eigenvalues with eigenvectors v1, . . . , vm Then the
proposition says that v1, . . . , vm is a linearly independent list of length m, so m ≤ n by
Proposition 7.9.

§26.1 Polynomials Applied to Linear Operators

Let T ∈ L (V ). Define:

• Tm
def
= T ◦ · · · ◦ T︸ ︷︷ ︸

m times

∈ L (V )

• T 0 def
= IdV ∈ L (V )

• If T is invertible, then T−m
def
= T−1 ◦ · · · ◦ T−1︸ ︷︷ ︸

m times

Let p(x) ∈ P(F) be polynomial with p(x) = a0 + a1x+ . . .+ anx
n.

Definition 26.2. P (T )
def
= a0IdV + a1T + . . .+ anT

n ∈ L (V ).

Example 26.3

V = P (F) and D ∈ L (V ) (differentiation)
Let p(x) = 7− 3x+ 5x2

Then p(D) = 7IdV − 3D + 5D2 ∈ L (V ).

§26.2 Existence of Eigenvalues

Eigenvalues don’t always exist! Their existence usually depends on the field.

38



Shaquille Que (Fall 2018) MATH 354 Lecture Notes

Example 26.4 (Eigenvalues Existing in C but not in R)

T :F2 →F2

(x, y) 7→(−y, x)

Then an eigenvector corresponding to an eigenvalue λ has the form T (v) = λv, i.e.
(−y, x) = λ(x, y). This means that λx = −y and λy = x so (λ2 + 1)y = 0.
Then either y = 0 (which forces x = 0, i.e. v is not an eigenvector) or λ2 + 1 = 0.

If F = R, there are no eigenvalues.
If F = C, then λ = i,−i are eigenvalues.

Theorem 26.5 (Maps in Vector Spaces over C have Eigenvalues)

Let V 6= {~0} be a finite dimensional vector space over C. Let T ∈ L (V ). Then T
has at least one eigenvalue.

Proof. Pick v 6= ~0 ∈ V . Let n = dimV . Then the n+ 1 vectors v, T (v), T 2(v), . . . , Tn(v)
must be linearly dependent. So there exist a0, . . . , an not all zero such that

a0v + a1T (v) + . . .+ anT
n(v) = ~0.

Let p(x) = a0+a1x+. . .+anx
n ∈ P(C). Since F = C, then p(x) = an(x−λ1) · · · (x−λn)

=⇒ an(T − λ1IdV ) · · · (T − λnIdV )(v) = ~0.
So at least one of T − λjIdV must not be injective. This is equivalent to T having an
eigenvalue λj .

§27 October 24, 2018

Let V be a finite dimensional vector space and T ∈ L (V ). Choose a basis v1, . . . , vn of
V and use the same basis for the domain and codomain of T :

M(T, (v1, . . . , vn) =

a1,1 . . . a1,n
...

. . .
...

an,1 . . . an,n



Example 27.1

Find the matrix of T : R2 → R2 with T (x, y) = (−x+y,−6x+4y) using the standard
basis.

Solution. M(T ) =

(
−1 1
−6 4

)
.

Example 27.2

Find the matrix of T : R2 → R2 with T (x, y) = (−x+ y,−6x+ 4y) using the basis(
1
2

)
,

(
0
1

)
.
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Solution. M(T ) =

(
1 1
0 2

)
.

Definition 27.3. A matrix is called upper-triangular if the entries below the diagonal
are zero.

Let T ∈ L (V ) and choose a basis v1, . . . , vn

Proposition 27.4

The following are equivalent:

(1) M(T ) is upper triangular

(2) T (vj) ∈ span(v1, . . . , vj) for each j = 1, . . . , n

(3) span(v1, . . . , vj) is invariant under T for j = 1, . . . , n.

Proof. (1)⇐⇒ (2): The matrix is upper triangular ⇐⇒ all coefficients below aj,j is 0,
i.e. T (vj) = a1,jv1 + . . .+ aj,jvj + aj+1,jvj+1 + . . .+ an,jvn = a1,jv1 + . . .+ aj,jvj .

(3) =⇒ (2) follows from definition: x ∈ span(v1, . . . , vj), then so is T (x). In particular,
T (vj) ∈ span(v1, . . . , vj)

(2) =⇒ (3): Let x ∈ span(v1, . . . , vj) Then x = b1v1 + . . . + bjvj and so Tx =
b1Tv1 + . . .+ bjTvj . We want to show that Tx ∈ span(v1, . . . , vj), so it suffices to show
that Tv1, . . . , T vj ∈ span(v1, . . . , vj). However, we know that Tvi ∈ span(v1, . . . , vi) ⊆
span(v1, . . . , vj).

Theorem 27.5 (Operators over Complex Space Have Upper Triangular Matrices)

Let V be a finite dimensional vector space over C and T ∈ L (V ) Then there exists
a basis of V for which M(T ) is upper triangular.

Proof. Induction on n = dimV . For the base case, every 1× 1 matrix is trivially upper
triangular.

For the inductive step, let n = dimV . Assume that the statement holds for all finite
dimensional vector space W over C such that dimW < n = dimV . Now let λ be an
eigenvalue of T (which exists since F = C). Let W = Im(T − λIdV ) ⊆ V .
Claim 1: dimW < n = dimV .

Proof of Claim 1: T − λIdV is not surjective, so W ( V .
Claim 2: W is invariant under T .

Proof of Claim 2: Let w ∈W . Then T (w) = T (w)− λw + λw = (T − IdV )(w) + λw
which is in W

Claims 1 and 2 imply that we can restrict T , T |W : W →W . Since dimW < n, then
by the inductive hypothesis, there is a basis w1, . . . , wm of W such thatM(T |W ) is upper
triangular.

Extend this to a basis of V w1, . . . , wm, v1, . . . , vn−m. Now for each k = 1, . . . , n−m,
T (vk) = (T − IdV )(vk) + λvk, where (T − λIdV )(vk) ∈ W = span(w1, . . . , wm) and
vk ∈ span(w1, . . . , wm, v1, . . . , vk). Thus, T (vk) ∈ span(w1, . . . , wm, v1, . . . , vk).

By Proposition 27.4,M(T ) is upper triangular with respect to the basis w1, . . . , wm, v1, . . . , vk.

Let V be a finite dimensional vector space over F andT ∈ L (V )
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Proposition 27.6

Suppose there exists a basis for V for which M(T ) is upper triangular. Then T is
invertible ⇐⇒ 0 is not on the diagonal of M(T ).

Proof. Suppose M(T, (v1, . . . , vn)) =


λ1 ∗ ∗ ∗
0 λ2 ∗ ∗
...

...
. . .

...
0 0 . . . λn

 with λi 6= 0 for all i.

Then T (v1) = λ1v1 =⇒ v1 = 1
λ1
T (v1) = T ( v1λ1 , so v1 ∈ ImT .

T (v2) = a1,2v1 + λ2v2 =⇒ v2 = T ( v2λ2 ) − a1,2
λ2
v1, so v2 is also in ImT . Similarly,

v1, . . . , vn ∈ ImT so T is surjective, and thus invertible.
Conversely, suppose that T is invertible. Note that M(T ) is upper triangular =⇒

T (v1) = λ1v1 6= 0 since otherwise, v1 ∈ kerT , which is impossible since T is injective.
Thus λ1 6= 0.

Suppose that λj = 0 for some 2 ≤ j ≤ n. Then T (vj) = a1,jv1 + a2,jv2 + . . . +
aj−1,jvj−1 + ���λjvj so that T (vj) ∈ span(v1, . . . , vj−1)

Since T is upper triangular, T (span(v1, . . . , vj)) ⊆ span(v1, . . . , vj−1), where the LHS
has dimension j and RHS has dimension j−1, so T is not injective and thus not invertible,
contradiction.

§28 October 29, 2018

Proposition 28.1

If M(T ) is upper triangular, then the eigenvalues of T are the diagonal entries.

Proof. Suppose M(T ) =


λ1 ∗ ∗ ∗ ∗
0 λ2 ∗ ∗ ∗
0 0 λ3 ∗ ∗
...

...
...

. . .
...

0 0 0 0 λn

. Let λ ∈ F. Then M(T − λIdV ) =


λ1 − λ ∗ ∗ ∗ ∗

0 λ2 − λ ∗ ∗ ∗
0 0 λ3 − λ ∗ ∗
...

...
...

. . .
...

0 0 0 0 λn − λ

 λ is an eigenvalue of T ⇐⇒ T − λIdV is not

invertible ⇐⇒ λ− λi = 0 for some i.

§28.1 Eigenspaces

Let V be a finite dimensional vector space over F and let T ∈ L (V ), λ ∈ F.

Definition 28.2. The eigenspace of T corresponding to λ is E(λ, T )
def
= ker(T −λIdV ).

i.e. it is the set of all eigenvectors of T corresponding to lambda, together with ~0.

Remark 28.3. λ is an eigenvalue of T ⇐⇒ E(λ, T ) 6= {~0}.
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Example 28.4

T ∈ L (R3),M(T ) =

5 0 0
0 19 0
0 0 19

 then

E(5, T ) = span(v1) E(19, T ) = span(v2, v3).

Let V be a finite dimensional vector space over F with T ∈ L (V ) and let λ1, . . . , λn
be distinct eigenvalues of T .

Proposition 28.5

E(λ1, T ) + . . .+ E(λn, T ) is a direct sum and dimE(λ1, T ) + . . .+ dimE(λn, T ) ≤
dimV .

Proof. Let ui ∈ E(λi, T ) for i = 1, . . . , nand suppose u1 + . . . + un = ~0. By Propo-
sition 25.5, ui = ~0 so the sum is direct, so dimE(λ1, T ) + . . . + dimE(λn, T ) =
dim(E(λ1, T ) + . . .+ E(λn, T )) ≤ dimV .

§29 October 31, 2018

Definition 29.1. An operator T ∈ L (V ) is diagonalizable if there exists a basis of V
for which M(T ) is diagonal.

Example 29.2

T ∈ L (R2) defined by T (x, y) = (41x+7y,−20x+74y). ThenM(T, standard basis) =(
41 7
−20 74

)
. But T is actually diagonalizable. Take basis (1, 4), (7, 5) so that

T (v1) = (69, 276) = 69 · v1 + 0 · v2
T (v2) = (322, 230) = 0 · v1 + 46 · v2

so M(T, (v1, v2)) =

(
69 0
0 46

)
.
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Theorem 29.3 (Conditions for Diagonalizability)

Suppose that V is a finite dimensional vector space over F and T ∈ L (V ). Let
λ1, . . . , λm denote all of the distinct eigenvalues of T . Then the following are
equivalent:

1. T is diagonalizable.

2. V has a basis of eigenvectors of T .

3. There exist 1-dimensional subspaces U1, . . . , Un of V each invariant under T
such that V = U1 ⊕ · · · ⊕ Un.

4. V = E(λ1, T )⊕ · · · ⊕ E(λm, T ).

5. dimV = dimE(λ1, T ) + . . .+ dimE(λm, T ).

Proof. (1)⇐⇒ (2): M(T ) is diagonal with respect to the basis v1, . . . , vn ⇐⇒ T (vi) =
λi · vi ∀ i = 1, . . . , n.
(2) =⇒ (3): Let v1, . . . , vn be a basis of V consisting of eigenvectors. T (vi) = λivi =⇒
Ui := span(vi) is invariant under T and is 1-dimensional. Moreover, V = U1 ⊕ · · · ⊕ Un
since v1, . . . , vn is a basis.
(3) =⇒ (2): Ui = span(vi) for some vi 6= 0 ∈ V . Since Ui is invariant under T , then
T (vi) = λivi, λi ∈ F. Since V = U1 ⊕ · · · ⊕ Un, then v1, . . . , vn is a basis.
(2) =⇒ (4): Any v ∈ V is a linear combination of eigenvectors =⇒ V ⊆ E(λi, T ) + . . .+
E(λm, T ). Since λ1, . . . , λm are distinct, Proposition 28.5 implies that the sum is direct.
(4) =⇒ (5) Done last week.
(5) =⇒ (2): Let dimV = n. Choose a basis for each E(λi, T ) and concatenate to get list
v1, . . . , vn which has length n.
Claim: v1, . . . , vn is a basis.
Proof: Suppose a1v1+. . .+anvn = ~0. Rewrite this as u1+. . .+um = ~0 with ui ∈ E(λi, T ),

ui =
∑
k

akvk with vk ∈ E(λi, T ). Then u1, . . . , um are linearly independent since each

ui = E(λi, T ) so it’s an eigenvector, and eigenvectors corresponding to distinct eigenvalues

are linearly independent, so ui = ~0 so uk =
∑
k

akvk − ~0 =⇒ ak = 0 since vk’s form a

basis of E(λi, T ). Apply to each Ui. Finally, v1, . . . , vn is a list of linearly independent
vectors of length n = dimV , and must therefore be a basis.

Example 29.4

T : C2 → C2 mapping (w, z) 7→ (z, 0). M(T ) =

(
0 1
0 0

)
. Eigenvalues: 0 ∈ C and

E(0, T ) = {v ∈ C2 | T (v) = ~0} = {(w, 0) ∈ C2} so dimE(0, T ) = 1, so T is not
diagonalizable.

Corollary 29.5

Suppose dimV = n. If T ∈ L (v) has n distinct eigenvalues, then T is diagonalizable.

Proof. λ1, . . . , λn distinct eigenvalues with corresponding eigenvectors v1, . . . , vn. They
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are linearly independent, so they must be a basis. By (2) =⇒ (1) of the theorem, we are
done.

§30 November 5, 2018

§30.1 Inner Product Spaces

Let V = Rn and let ~x = (x1, . . . , xn).

Definition 30.1. The norm of ~x is

‖~x‖ =
√
x21 + x22 + . . .+ x2n.

Definition 30.2. For ~x, ~y ∈ Rn, the dot product is

~x · ~y = x1y1 + x2y2 + . . .+ xnyn.

Remark 30.3. ‖~x‖2 = ~x · ~x.

Definition 30.4. The angle θ between ~x and ~y ∈ Rn is

‖~x‖ · ‖~y‖ cos θ = ~x · ~y.

Properties

• ~x · ~x ≥ 0 and ~x · ~x = 0 ⇐⇒ ‖~x‖ = 0 ⇐⇒ ~x = ~0.

• ~x · ~y = ~y · ~x.

• Fix ~y ∈ Rn. The map D~y : Rn → R taking ~x 7→ ~x · ~y is linear.

Now let V be a vector space over F = R or C.

Definition 30.5. An inner product on V takes in an ordered pair of vectors (~u,~v) ∈ V 2

and outputs 〈u, v〉 ∈ F satisfying:

1. 〈~v,~v〉 ≥ 0 for all v ∈ V (in particular 〈v, v〉).

2. 〈~v,~v〉 = 0 ⇐⇒ ~v = ~0.

3. 〈~u+ ~v, ~w〉 = 〈~u, ~w〉+ 〈~v, ~w〉.

4. 〈λ · ~v, ~w〉 = λ · 〈~v, ~w〉

5. 〈~u,~v〉 = 〈~v, ~u〉
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Example 30.6

Examples of inner products:

1. V = Rn,F = R and 〈 , 〉 = dot product.

〈(x1, . . . , xn), (y1, . . . , yn)〉 = x1y1 + . . .+ xnyn ∈ R.

2. V = Cn,F = C and 〈(z1, . . . , zn), (w1, . . . , wn)〉 = z1w1 + z2w2 + . . .+ znwn.

〈~z, ~z〉 = z1z1 + z2z2 + . . .+ znzn = |z1|2 + |z2|2 + . . .+ |zn|2 ≥ 0.

3. V = P(R),F = R and 〈p, q〉 =

∫ ∞
0

p(x)q(x)e−x dx.

4. V = {f : [−1, 1]→ R | f is continuous},F = R and 〈f, g〉 =
∫ 1
−1 f(x)g(x) dx.

Definition 30.7. An inner product space is a vector space with an inner product.

These axioms have some straightforward consequences:

1. Fix ~u ∈ V . Define T~u : V → F with ~v 7→ 〈~v, ~u〉. Then T~u is linear.

2. 〈~0, ~u〉 = 0 for all ~u ∈ V .

3. 〈~u,~v + ~w〉 = 〈~u,~v〉+ 〈~u, ~w〉.

Proof. 〈~u,~v + ~w〉 = 〈~v + ~w, ~u〉 = 〈~v, ~u〉+ 〈~w, ~u〉 = 〈~u,~v〉+ 〈~u, ~w〉.

4. 〈~u,~0〉 = 0 for all ~u ∈ V .

5. 〈~u, λ~v〉 = λ〈~u,~v〉.

Proof. 〈~u, λ~v〉 = 〈λ~v, ~u〉 = λ〈~v, ~u〉.

§31 November 7, 2018

Definition 31.1. The norm ‖~v‖ def
=
√
〈v, v〉 satsifies

• ‖~v‖ = 0 ⇐⇒ 〈~v,~v〉 = 0 ⇐⇒ ~v = ~0.

• ‖λ~v‖ =
√
〈λ~v, λ~v〉 = |λ| · ‖~v‖.

Definition 31.2. Two vectors ~u,~v ∈ V are orthogonal if 〈~u~v〉 = 0.

Example 31.3 (Orthogonality in R2)

V = R2,F = R〈 , 〉 = dot product.
Then 〈(x1, y1), (x2, y2)〉 = 0 ⇐⇒ x1x2 + y1y2 = 0.
⇐⇒ y1y2 = −x1x2
⇐⇒ y1

x1
= −x2

y2
= − 1

y2
x2

⇐⇒ vectors are perpendicular.
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Theorem 31.4 (Pythagorean Theorem)

Suppose ~u,~v ∈ V are orthogonal. Then

‖~u+ ~v‖2 = ‖~u‖2 + ‖~v‖2

Proof.

‖~u+ ~v‖2 = 〈~u+ ~v, ~u+ ~v〉
= 〈~u, ~u+ ~v〉+ 〈~v, ~u+ ~v〉
= 〈~u, ~u〉+ �

��〈~u,~v〉 + �
��〈~v, ~u〉 + 〈~v,~v〉

= ‖~u‖2 + ‖~v‖2 .

§31.1 Orthogonal Projection

Idea: Given ~u,~v ∈ V , find c ∈ F and ~w ∈ V such that ~u = c~v+ ~w, where ~w is orthogonal
to ~v.

Then ~u = c~v + (~u− c~v)︸ ︷︷ ︸
~w

. We want 〈~w,~v〉 = 0.

〈~w,~v〉 = 0 ⇐⇒ 〈~u− c~v,~v〉 = 0

⇐⇒ 〈~u,~v〉+ 〈−c~v,~v〉 = 0

⇐⇒ 〈~u,~v〉 − c〈~v,~v〉 = 0

⇐⇒ 〈~u,~v〉 = c〈~v,~v〉 = c ‖~v‖2

This shows that

c =
〈~u,~v〉
‖~v‖2

~w = ~u− 〈~u,~v〉
‖~v‖2

~v.

§31.2 Cauchy-Schwartz Inequality

Suppose ~u,~v ∈ V . Then
|〈~u,~v〉| ≤ ‖~u‖ · ‖~v‖ .

Moreover, equality holds ⇐⇒ one of ~u,~v is a scalar multiple of the other.

Proof. If ~v = ~0, then both sides of the desired inequality are 0, and we are done. Assume
~v 6= ~0.

Consider the orthogonal decomposition ~u =
〈~u,~v〉
‖~v‖2

~v + ~w where ~w is orthogonal to ~v.

By the Pythagorean Theorem,

‖~u‖2 =

∥∥∥∥〈~u,~v〉‖~v‖2
~v

∥∥∥∥2 + ‖~w‖2

=
|〈~u,~v〉|2 · ‖~v‖2

‖~v‖4
+ ‖~w‖2

=
|〈~u,~v〉|2

‖~v‖2
+ ‖~w‖2

≥ |〈~u,~v〉|
2

‖~v‖2
.
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and the result follows. Equality holds ⇐⇒ ‖~w‖2 · ‖~v‖2 = 0 ⇐⇒ ‖~w‖2 = ~0 ⇐⇒ ~v is a
multiple of ~u.

Example 31.5

Let ~x = (x1, . . . , xn), ~y = (y1, . . . , yn) ∈ Rn with the dot product. Then Cauchy-
Schwartz tells us that

|x1y1 + . . .+ xnyn|2 ≤ (x21 + . . .+ x2n)(y21 + . . .+ y2n).

§32 November 9, 2018

Theorem 32.1 (Triangle Inequality)

Suppose u, v ∈ V . Then ‖u+ v‖ ≤ ‖u‖+ ‖v‖.

Proof.

‖u+ v‖2 = 〈u+ v, u+ v〉
= 〈u, u〉+ 〈u, v〉+ 〈v, u〉+ 〈v, v〉
= 〈u, u〉+ 〈v, v〉+ 〈u, v〉+ 〈u, v〉
= ‖u‖2 + ‖v‖2 + 2<〈u, v〉
≤ ‖u‖2 + ‖v‖2 + 2 |〈u, v〉|
≤ ‖u‖2 + ‖v‖2 + 2 ‖u‖ ‖v‖ by Cauchy-Schwartz

= (‖u‖+ ‖v‖)2

Definition 32.2. A list of vectors is called orthonormal if each vector in the list has
norm 1 and is orthogonal to all other vectors in the list. i.e. e1, . . . , em is orthonormal if

〈ei, ej〉 =

{
1 i = j

0 i 6= j

Example 32.3

Orthonormal lists

• the standard basis in Rn or Cn with respect to the dot product

•
(

1√
3
, 1√

3
, 1√

3

)
,
(
− 1√

2
, 1√

2
, 0
)

in R3 or C3.

•
(

1√
6
, 1√

6
,− 2√

6

)
added to the list above

Lemma 32.4

If e1, . . . , em is an orthonormal list of vectors in V , then

‖a1e1 + . . .+ amem‖2 = |a1|2 + . . .+ |am|2
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Proof. Since ‖ej‖ = 1 for each j, we can apply the Pythagorean Theorem repeatedly to
obtain the result.

Proposition 32.5

Every orthonormal list of vectors in V is linearly independent.

Proof. Suppose that e1, . . . , em is an orthonormal list and a1, . . . , am ∈ F are such that
a1e1 + . . .+ amem = ~0.

Then take the norm of both sides and apply the lemma to obtain

|a1|2 + . . .+ |am|2 = 0 =⇒ ai = 0

so e1, . . . , em is linearly independent.

Definition 32.6. An orthonormal basis of V is an orthonormal list of vectors in V
that is also a basis.

Example 32.7

V = R4.

v1 =

(
1

2
,
1

2
,
1

2
,
1

2

)
v2 =

(
1

2
,
1

2
,−1

2
,−1

2

)
v3 =

(
1

2
,−1

2
,
1

2
,−1

2

)
v4 =

(
1

2
,
1

2
,−1

2
,−1

2

)

Proof. To see that this is a basis, we’ll check that it is an orthonormal list.

‖vi‖ =

√(
1

2

)2

+

(
1

2

)2

+

(
1

2

)2

+

(
1

2

)2

= 1.

Check that vi · vj = 0 for i 6= j so the orthonormal and linearly independent list of length
4 must be a basis.

Proposition 32.8

Suppose e1, . . . , en is an orthonormal basis of V and v ∈ V , then

v = 〈v, e1〉e1 + . . .+ 〈v, en〉en

Proof. Since e1, . . . , en is a basis of V , there are scalars a1, . . . , an ∈ F such that v =
a1e1 + . . .+ anen.

Since e1, . . . , en is orthonormal, consider the inner product

〈v, ej〉 = 〈a1e1 + . . .+ anen, ej〉
= 〈a1e1, ej〉+ . . .+ 〈anen, ej〉
= aj〈ej , ej〉
= aj
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§33 November 12, 2018

§33.1 Gram-Schmidt Procedure

Let V be a finite dimensional vector space.
Input: A linearly independent list v1, . . . , vm in V .
Output: An orthonormal list e1, . . . , em satisfying span(v1, . . . , vj) = span(e1, . . . , ej)
for j = 1, . . . ,m.

Step 1: e1 =
v1
‖v1‖

. Note 〈e1, e1〉 = 1.

Step j: ej =
vj − 〈vj , e1〉e1 − . . .− 〈vj , ej−1〉ej−1
‖vj − 〈vj , e1〉e1 − . . .− 〈vj , ej−1〉ej−1‖

. Verify that 〈ej , ek〉 = 0 if j 6= k.

Note that ej ∈ span(v1, . . . , vj)

e.g. e1 ∈ span(v1) and e2 =
v2 − 〈v2, e1〉e1
‖v2 − 〈v2, e1〉e1‖

∈ span(v1, v2).

This shows that span(e1, . . . , ej) ⊆ span(v1, . . . , vj). Since both lists are linearly indepen-
dent, they both have dimension j, so span(e1, . . . , ej) = span(v1, . . . , vj).

Example 33.1

V = R3 with the dot product as inner product.

v1 = (1, 1, 0) v2 = (2, 2, 3) v3 = (0, 1,−1)

Solution. Applying Gram Schmidt to v1, v2, v3,

Step 1: c1 =
(1, 1, 0)

‖(1, 1, 0)‖
=

(
1√
2
,

1√
2
, 0

)
.

Step 2: e2 =
v2 − 〈v2, e1〉e1
‖v2 − 〈v2, e1〉e1‖

=
(2, 2, 3)−

(
(2, 2, 3) ·

(
1√
2
, 1√

2
, 0
))(

1√
2
, 1√

2
, 0
)

‖numerator‖
=

(2, 2, 3)− (2, 2, 0)

‖numerator‖
= (0, 0, 1).

Step 3: The numerator of e3 is v3 − 〈v3, e1〉e1 − 〈v3, e2〉e2 = (0, 1,−1) − (0, 1,−1) ·(
1√
2
,

1√
2
, 0

)
e1 − (0, 1,−1) · (0, 0, 1)e2 = (0, 1,−1) − 1√

2
e1 + e2 =

(
−1

2
,
1

2
, 0

)
. So

e3 =
(
− 1√

2
, 1√

2
, 0
)

.

Consequences of the Gram-Schmidt

1. Every finite dimensional inner product space has an orthonormal basis.

2. Any orthonormal list can be extended to an orthonormal basis

3. Suppose T ∈ L (V ) and there exists a basis v1, . . . , vm of V such thatM (T, (v1, . . . , vm))
is upper triangular. Then there exists an orthonormal basis e1, . . . , em such that
M (T, (e1, . . . , em)) is upper triangular.

Proof of (3). Apply the Gram-Schmidt procedure to v1, . . . , vm to get an orthonormal
list e1, . . . , em. Since span(v1, . . . , vj) = span(e1, . . . , ej) for each j = 1, . . . ,m, M(T )
is upper triangular means T (span(v1, . . . , vj)) ⊆ span(v1, . . . , vj). This means that
span(v1, . . . , vj) is T -invariant, which means that span(e1, . . . , ej) is also T -invariant, so
that M(T, (e1, . . . , em)) is upper triangular.
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§34 November 14, 2018

Linear Functionals on an Inner Product Space

Let V be a finite dimensional inner product space and φ : V → F be a linear functional.
Let e1, . . . , en be an orthonormal basis of V . If v ∈ V , then by Proposition 32.8, we can
write v as v = 〈v, e1〉e1 + . . .+ 〈v, en〉en. Then

φ(v) = 〈v, e1〉φ(e1) + . . .+ 〈v, en〉φ(en)

= 〈v, e1φ(e1)〉+ . . .+ 〈v, enφ(en)〉
= 〈v, e1φ(e1) + . . .+ enφ(en)︸ ︷︷ ︸

call this vector u

〉

= 〈v, u〉

Note that u does not depend on v, so φ(v) = 〈v, u〉 for all v ∈ V . This motivates the
following theorem:

Theorem 34.1 (Riesz Representation Theorem)

For every φ ∈ V , there exists a unique u ∈ V such that

φ(v) = 〈v, u〉 ∀v ∈ V.

Proof. Since existence has already been shown above, it suffices to show that this
representation is unique. Suppose there exist u1, u2 such that 〈v, u1〉 = 〈v, u2〉 ∀v ∈ V .
=⇒ 〈v, u1 − u2〉 = 0 for all v ∈ V .
Choose v = u1 − u2, then 0 = 〈u1 − u2, u1 − u2〉 = ‖u1 − u2‖ =⇒ u1 − u2 = 0 =⇒
u1 = u2.

Example 34.2

V = P2(R) with 〈p, q〉 =

∫ 1

−1
p(x)q(x) dx.

Then Gram-Schmidt produces the orthonormal basis

e1 =
1√
2
, e2 =

√
3

2
x, e3 =

√
45

8

(
x2 − 1

3

)

Let φ : P2(R)→ R sending p 7→
∫ 1

−1
p(x) cosπx dx.

We want to find q(x) ∈ P2(x) such that φ(p) = 〈p, q〉, i.e.

∫ 1

−1
p(x) cosπx dx =∫ 1

−1
p(x)q(x) dx. Note that we can’t take q(x) to be cosπx since cosπx is not in P2(R).

Riesz Representation Theorem tells us that q(x) is equal to

1√
2

(∫ 1

−1

1√
2

cosπx dx

)
+

√
3

2
x

(∫ 1

−1

√
3

2
x cosπx dx

)
+

√
45

8

(
x2 − 1

3

)(∫ 1

−1
e3 cosπx dx

)

= − 45

2π2

(
x2 − 1

3

)
.
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§35 November 16, 2018

§35.1 Adjoint of an Operator

Let (V, 〈 , 〉V ),W, 〈 , 〉W be two inner product spaces. Let T : V →W be a linear map.

Definition 35.1. The adjoint of T is the function T ∗ : W → V such that

〈T (v), w〉W
def
= 〈v, T ∗(w)〉V

for all v ∈ V,w ∈W .

To show that this definition makes sense, fix w ∈W and consider φ : V → F defined
by φ(v) := 〈T (v), w〉W . By Riesz Representation Theorem, there is a unique u ∈ V such
that φ(v) = 〈v, u〉V . Thus, we just call/define u as T (w).

Example 35.2

Find the adjoint of T : R3 → R2 with the dot product sending (x1, x2, x3) 7→
(x1 + x2, 2x2 + x3).

Solution. T ∗ : R2 → R2.

〈(x1, x2, x3), T ∗(y1, y2)〉R3 = 〈T (x1, x2, x3), (y1, y2)〉R2

= 〈(x1 + x2, 2x2 + x3), (y1, y2)〉R2

= y1(x1 + x2) + y2(2x2 + x3)

= x1y1 + x2(y1 + 2y2) + x3y2

= 〈(x1, x2, x3), (y1, y1 + 2y2, y2)〉R3

so T ∗(y1, y2) = (y1, y1 + 2y2, y2).

Proposition 35.3 (The Adjoint is a Linear Map)

If T ∈ L (V,W ), then T ∗ : W → V is linear.

Proof. Fix w1, w2 ∈W and let v ∈ V .

〈v, T ∗(w1 + w2)〉V = 〈T (v), w1 + w2〉W
= 〈T (v), w1〉W + 〈T (v), w2〉W
= 〈v1, T ∗(w1)〉V + 〈v, T ∗(w2)〉V
= 〈v, T ∗(w1) + T ∗(w2)〉V

so T ∗(w1 + w2) = T ∗(w1) + T ∗(w2).
Now let λ ∈ F and w ∈W . If v ∈ V then

v, T ∗(λw)〉V = 〈T (v), λW 〉W
= λ〈T (v), w〉W
= λ〈v, T ∗(w)〉V
= 〈v, λT ∗(w)〉V

so T ∗(λw) = λT ∗(w).
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Properties of the Adjoint

Let S, T ∈ L (V,W ).

1. (S + T )∗ = S∗ + T ∗.

Proof. 〈v, (S + T )∗(w)〉V = 〈(S + T )(v), w〉W = 〈S(v), w〉W + 〈T (v), w〉W =
〈v, S∗(w)〉V + 〈v, T ∗(w)〉V = 〈v, S∗(w) + T ∗(w)〉V .

2. (λT )∗ = λT ∗.

3. (T ∗)∗ = T .

Proof. 〈w, (T ∗)∗〉W = 〈T ∗(w), v〉V = 〈v, T ∗(w)〉V = 〈T (v), w〉W = 〈w, T (v)〉W

4. I∗ = I.

5. (ST )∗ = T ∗S∗.

§36 November 19, 2018

Proposition 36.1 (The Matrix of T ∗)

Let T ∈ L (V,W ), e1, . . . , en be an orthonormal basis of V , and f1, . . . , fm be an
orthonormal basis of W . Then

M(T ∗, (f1, . . . , fm), (e1, . . . , em)) =M(T )
t
.

Proof. Let M(T ) =

a1,1 . . . a1,n
...

. . .
...

am,1 . . . am,n

.

T (ek) = a1,kf1 + . . .+am,kfm = 〈T (ek), f1〉f1 + . . .+ 〈T (ek), fm〉fm, so ai,k = 〈T (ek), fi〉.

Now, also M(T ∗) =

b1,1 . . . b1,m
...

. . .
...

bn,1 . . . bn,m

.

T ∗(fk) = b1,ke1+ . . .+bn,ken = 〈T ∗(fk), e1〉e1+ . . .+〈T ∗(fk), en〉en, so bi,k = 〈T ∗(fk), ei〉.
Hence,

bi,k = 〈T ∗(fk), ei〉
= 〈fk, (T ∗)∗(ei)〉
= 〈fk, T (ei)〉
= 〈T (ei), fk〉
= ak,i

Now we take the case when V = W , i.e. T ∈ L (V ).

Definition 36.2. T is self-adjoint if T ∗ = T , i.e.

〈T (vi), v2〉 = 〈v1, T (v2)〉 v1, v2 ∈ V.

Definition 36.3. T is normal if T ◦ T ∗ = T ∗ ◦ T .
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Note that self-adjoint =⇒ normal.

Remark 36.4. If T is self-adjoint, thenM(T ) =M(T )
t

with respect to an orthonormal
basis of V .

Example 36.5

T : C3 → C3 with respect to the standard basis. Then

M(T ) =

 3 i 2 + i
−i 7 0

2− i 0 9

 .

Remark 36.6. Normal ; self-adjoint.

Example 36.7

T : R2 → R2 with respect to the standard basis. Then M(T ) =

(
2 −3
3 2

)
is not

self-adjoint. But T ∗T −TT ∗ =

(
2 3
−3 2

)(
2 −3
3 2

)
−
(

2 −3
3 2

)(
2 3
−3 2

)
=

(
0 0
0 0

)
,

so T is normal.

Remark 36.8. S := T ∗T − TT ∗ is self-adjoint.

Proposition 36.9

Self-adjoint operators have real eigenvalues.

Proof. Suppose T is self-adjoint and Tv = λv, v 6= 0.
λ ‖v‖2 = λ〈v, v〉 = 〈λv, v〉 = 〈T (v), v〉 = 〈v, T ∗(v)〉 = 〈v, T (v)〉 = 〈v, λv〉 = λ〈v, v〉 =
λ ‖v‖2 =⇒ λ = λ since ‖v‖2 6= 0.

Proposition 36.10

If T is self-adjoint, then

〈T (v), v〉 = 0 ∀ v ∈ V ⇐⇒ T = 0.

Corollary 36.11

T is normal ⇐⇒ ‖T (v)‖ = ‖T ∗(v)‖ ∀ v ∈ V .
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§37 November 26, 2018

Proof. Define S := T ∗T − TT ∗.

T is normal ⇐⇒ S = 0

⇐⇒ S is self-adjoint

⇐⇒ 〈S(v), v〉 = 0 ∀ v ∈ V
⇐⇒ 〈(T ∗T − TT ∗)(v), v〉 = 0

⇐⇒ 〈T ∗T (v), v〉 = 〈TT ∗(v), v〉
⇐⇒ 〈T (v), T (v)〉 = 〈T ∗(v), T ∗(v)〉
⇐⇒ ‖T (v)‖ = ‖T ∗(v)‖ ∀ v ∈ V.

Proposition 37.1

T is normal ⇐⇒ T − λId is also normal.

Proof. See Axler.

Corollary 37.2

T normal =⇒ eigenvectors corresponding to distinct eigenvalues are orthogonal.

Proof. Suppose T (v) = λv and T (w) = βw where λ 6= β and v, w 6= ~0. Then

0 = 〈T (v), w〉 − 〈v, T ∗(w)〉
= 〈λv,w〉 − 〈v, βw〉
= λ〈v, w〉 − β〈v, w〉
= (λ− β)〈v, w〉.

Since λ 6= β, then 〈v, w〉 = 0.

§37.1 Spectral Theorem over C

Theorem 37.3 (Complex Spectral Theorem)

Let V be a finite dimensional vector space with F = C. Let T ∈ L (V ). Then the
following are equivalent:

1. T has a diagonal matrix with respect to some orthonormal basis of V .

2. V has an orthonormal basis of eigenvectors of T .

3. T is normal.

Proof. (3) =⇒ (1): Let n = dimV . By Theorem 27.5, we know that V has a basis

e1, . . . , en such thatM(T ) is upper-triangular, i.e. M(T ) =

a1,1 . . . a1,n
...

. . .
...

0 . . . an,n

. Applying

Gram-Schmidt to this list, we can assume that e1, . . . , en is an orthonormal basis.
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We claim thatM(T ) is already diagonal. To see this, considerM(T ∗) =

a1,1 . . . 0
...

. . .
...

a1,n . . . an,n

.

T ∗(e1) = a1,1e1 + . . .+ a1,nen. So T normal =⇒ ‖T ∗(e1)‖ = ‖T (e1)‖ =⇒ |a1,1|2 +
. . .+ |a1,n|2 = |a1,1|2 =⇒ a1,2 = . . . = a1,n = 0. Repeating this argument for the other
rows of M(T ) yields the desired result.

(1) =⇒ (3): Suppose there exists an orthonormal basis e1, . . . , en such thatM(T, (e1, . . . , en)) =λ1 . . . 0
...

. . .
...

0 . . . λn

. Then M(T ∗) =

λ1 . . . 0
...

. . .
...

0 . . . λn

.

To show that TT ∗ = T ∗T , it suffices to check that M(T )M(T ∗) = M(T ∗)M(T ),
which holds because they are both diagonal matrices.

(1)⇐⇒ (2): This holds by Theorem 29.3.

§37.2 Spectral Theorem over R

Theorem 37.4 (Real Spectral Theorem)

Let V be a finite dimensional vector space with F = R. Let T ∈ L (V ). Then the
following are equivalent:

1. T has a diagonal matrix with respect to some orthonormal basis of V .

2. V has an orthonormal basis of eigenvectors of T .

3. T is self-adjoint.

§38 November 28, 2018

§38.1 Positive Operators

Definition 38.1. T ∈ L (V ) is positive or semi-definite if it is self adjoint and 〈Tv, v〉 ≥
0 for all v ∈ V .

Remark 38.2. Positive operators have nonnegative eigenvalues.

Proof. 0 ≤ 〈Tv, v〉 = 〈λv, v〉 = λ〈v, v〉 = λ ‖v‖2.

Definition 38.3. A square root of T ∈ L (V ) is an R ∈ L (V ) such that T = R2.

Proposition 38.4

Positive operators have positive square roots.

Proof. Use the Spectral Theorem to obtain a diagonal matrix of nonnegative elements.
Take the square root of each element to obtain matrix R.

Proposition 38.5

If T ∈ L (V ), then S := T ∗T is positive.
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Proof. S is self adjoint because S∗ = (T ∗T )∗ = T ∗(T ∗)∗ = T ∗T = S.
Positivity condition: 〈Sv, v〉 = 〈T ∗Tv, v〉 = 〈Tv, Tv〉 = ‖Tv‖2 ≥ 0.

§38.2 Singular Value Decomposition

Let V have dimension n and T ∈ L (V ). T ∗T is positive =⇒ it has a square root√
T ∗T .

Definition 38.6. The singular values s1, . . . , sn of T are the eigenvalues of
√
T ∗T ,

each one repeated dimE(si,
√
T ∗T ) times.

Order the singular values so that s1 ≥ s2 ≥ . . . ≥ sn ≥ 0.

Theorem 38.7

Let (V, 〈 , 〉) be an inner product space over R of dimension n. Let T ∈ L (V ) be a
linear operator with singular values s1, . . . , sn. Then there exist orthonormal bases
e1, . . . , en and f1, . . . , fn of V such that

M(T, (e1, . . . , en), (f1, . . . , fn)) =


s1 0 . . . 0
0 s2 . . . 0
...

...
. . .

...
0 0 . . . sn


In particular, T (ei) = sifi.

Since v = 〈v, e1〉+ . . .+ 〈v, en〉,

T (v) = s1〈v, e1〉f1 + . . .+ sn〈v, en〉fn for all v ∈ V

Example 38.8

Let A be the matrix of T with respect to the standard basis of T .
The SVD Theorem is equivalent to saying there are unitary matrices U, V such that

A = U · Σ · V t

where Σ is the diagonal matrix whose diagonals contain the singular values of T .
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